Proof of Concept (POC) studies for neuropathic pain

Srinivasa N. Raja Professor of Anesthesiology and Neurology Johns Hopkins University School of Medicine Baltimore, USA

POC studies for Neuropathic Pain: Outline

- What is it? (definition)
- Why do it? (potential uses)
- How can the signal to noise ratio be improved?
- What lessons can be learnt from Trial Designs of past neuropathic pain studies?
- Is there an Optimal Strategy?

POC studies: definition

The Concept: Engaging a particular target results in a meaningful change in a clinical end point thus identifying a new avenue to treat a condition/ disease in patients
 Strategy: Relatively small phase II clinical trial to confirm preclinical data demonstrating a novel mechanism may be a viable treatment

Goal of POC studies

Testing New Molecular Entities
Phase II: Early identification of a promising compound in small POC trials- helps make an early Go-No Go decision
Estimate of treatment effect and its variance
Not meant for regulatory approval

POC studies in Neuropathic Pain Other Concepts that have been tested

- Is neuropathic pain sensitive to a certain drug class?
 e.g., opioids
- Are topical therapies effective in treating neuropathic pain? Test a new route of therapy/ site of action/mechanism
- Can novel formulations of an existing drug improve safety? Abuse deterrent opioids
- Is one class of drugs better than another for the treatment of neuropathic pain? Comparative studies

An Optimal POC trial

High assay sensitivity

- "... the ability to distinguish an effective treatment from a less effective or ineffective treatment."
- Rapid enrollment
- Study duration relatively short
- Minimize exposure to placebo or ineffective therapy
- Moderate sample size
- Low drop out

www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm125912.pdf

Group differences: Minimizing placebo and maximizing drug effects

Dworkin et al. Pain 2009;146:238

Enhancing Signal-Noise ratio in neuropathic pain

Disease- Clinical model Design- Trial methods (parallel vs crossover, enriched designs, fixed vs flexible dosing, rescue meds Subject: pain intensity min-max, duration, variability, training Outcome measures and Interpretation Investigator(s)- no of sites, training

Disease: Clinical Model Neuropathic pain trials

- PHN, diabetic neuropathy
 Duloxetine
- Diabetic neuropathy Tapentadol
- Diabetic neuropathy
- Topical NGX-4010
 - PHN, HIV neuropathy

Industry

- Nortriptyline + Gabapentin
 - PHN or diabetic neuropathy
- Morphine + Gabapentin
 - PHN or diabetic neuropathy

Academia

- Levorphanol
 - Peripheral or central neuropathic pain
 - Nabilone vs dihydrocodeine
 - Neuropathic pain

Lumping: Neuropathic Pain

PRO

- Easier to recruit
- Study duration shorter
- Fewer sites neededdecreases site variability
- Greater generalizability
- Helps examine drugs in less common pain states

Rowbotham. Neurology 2005;65 suppl 4:S66

CON

- Assumes common underlying mechanisms
- More variability in data?
- May result in false
 negative if drug effective
 in some, but not all
 disease states
- May not be helpful in the regulatory process

Splitting: Specific neuropathic pain state

PRO

- Homogenous group
- Less variability
- Easier to analyze data from multiple studies (meta-analysis)
- Establishes disease to study for subsequent phase 2 and 3 studies

CON

- Limited generalizability
 Does not predict if drug
 likely to be effective in
 other disease states
- Slower recruitment
- Multiple sites needed
- Less common diseases may not be studied

Study Designs

Parallel vs Crossover
 Enriched enrollment design

 Time to withdrawal design

 Mechanism-based clinical studies (Wallace MS 2002 J Pain)
 Split-trial strategy- pooled data from few centers with extensive testing

Is neuropathic pain resistant to opioids? Opioid vs Sodium channel blockers on postamputation pain- double-blind cross-over studies

Wu et al. Anesthesiology 2008;109:289

Combination therapy enhances efficacy Nortriptyline and gabapentin cross-over RCT

40 DPN, 15 PHN subjects- 3 different sequences to control for order effects

Patient numbers relatively small

Gilron I et al. Lancet. 2009;374:1252

Cross-over trials: Pros and Cons Head to head comparisons

Minimizes effects of intersubject variability
Efficient-fewer subjects required
Reduced placebo group changes

•May provide insight on pain mechanisms- additive/synergistic

PRC

Carry over effects from slow offset or prolonged duration of effect
No dose-response information
May not help as pilot to plan Phase III studies- estimate of variance
Potential for prolonged study duration- increased dropout

CON

Katz JK, Finnerup NB, Dworkin RH Neurology 2008;70:26 Polydefkis M, Raja SN Neurology 2008;70:250

POC study for topical agents Within subject comparisons

Within subject comparison of vehicle vs active drug on allodynia

Courtesy J Campbell, Arcion Therap.

Enriched Enrollment Randomized Withdrawal Design

- Greater drug-placebo difference
- Lower variability and increased effect size
- Time to efficacy failure more sensitive end point

- Generalizability to population
- Potential for carry-over effects from initial drug exposure
- Unblinding of the placebo gp

Systematic review of Enriched Enrollment Trials of pregabalin and gabapentin in neuropathic pain

- Estimates of efficacy unchanged
- Inadequate enrichment or enhancement of treatment effect minimal

Pregabalin for Peripheral Neuropathic Pain: A Multicenter, EERW Placebo-controlled Trial

DPN, PHN, other diagnosis
30% reduction in pain score at week 4
40% pt not randomized

Gilron I et al. Clin J Pain. 2011;27:185

Outcome measures

Pregabalin for Peripheral Neuropathic Pain: A Multicenter, EERW Placebo-controlled Trial

Gilron I et al. Clin J Pain. 2011;27:185

POC in neuropathic pain: Enriched enrollment randomized withdrawal design

Subjects: DPN, PHN, small fiber neuropathy, idiopathic sensory neuropathy Hewitt DJ et al. Pain 2011;152:414

Enriched enrollment randomized withdrawal design for POC: Pregabalin for neuropathic pain

Largest effect size in responders-open phase

Hewitt DJ et al. Pain 2011;152:414

Enriched Designs with Randomized Withdrawal: Pros and cons

PRO

Increased assay sensitivity
Short duration trial
Drop outs less of an issue as that is the end point during blinded phase

CON

 Assumes rapid titratability and onset of drug effect

Optimizing Study Population IMMPACT recommendations

- Baseline pain severity (>4 and <9) and duration (>6 m)
 Baseline diary compliance >6/7 per week
- Trained subjects: skilled pain reporters, manage expectation bias
- Pain variability- lack of?
- Baseline pain consistency?
- Discarding high placebo responders?
- Psychopathology
- Geographical/ cultural differences

Bjune et al. Act Anaesthesiol Scand 1998: 40:399 Dworkin et al. IMMPACT on Assay sensitivity, 2011

The Optimal Disease Population

Optimal time in the course of the disease (natural course of the disease)

Acetyl-carnitine and diabetic neuropathic pain

Sima et al, Diabetes Care 2005;28;89

POC: The balance between efficacy and adverse effects

ABT-594 in diabetic neuropathic pain (Neuronal nicotinic acetylcholine receptor agonist)

	Placebo	ABT-150 x 2	ABT-225 x 2	ABT-300 x2
Change in Pain Intensity	- 1.1	-1.9 *	- 1.9 *	- 2.0 *
Discontinuation rate	22 %	38 %	57 %	75 %
Adverse Events	9 %	28 %	46 %	66 %

Nausea, dizziness, vomiting, asthenia

Rowbotham et al. Pain 2009; 146:245

POC: Optimizing Investigator and Site Factors

- Minimize number of sites: Infrastructure, Variable training and experience of staff
- Minimize staff-patient interactions
- Appropriate blinding of investigative team
- Minimizing financial incentives for rapid recruitment
 - "Is bigger better for depression trials?" Liu KS et al. 2007
 - A significant treatment effect before about 100 patients per arm, additional patients did not maintain achieved level of significance, one +ve study turned –ve

POC: Site recruitment rate and placebo Pooled data from 3 lamotrigine trials for NP

 Site recruitment rate- an independent predictor of placebo response

Summary: Optimizing POC study design

 Study design- consistent with the aim of the study
 Factors to consider: Disease, Design, Subject, Outcome measures, and Investigator

Enhancing signal to noise

Decrease placebo response?

- Enroll patients with greater baseline pain severity
- Use Flexible vs Fixed dose designs
- Minimize number of treatment groups
- Strategies to decrease staff and pt expectations
- Crossover or enriched design?
- Short term trials, sample size?
- Active comparators?

The Optimal Strategy No single ideal trial method

