

Can assay sensitivity be increased in analgesic trials? Maximizing the reliability and validity of outcome measures

Laurie B Burke Associate Director for Study Endpoints and Labeling Office of New Drugs, CDER, FDA and Donald L Patrick Professor, University of Washington

www.fda.gov

Summary

- Reduction of variability is the next frontier in better measurement and clinical study efficiency
- Small effect sizes demand attention to variability of the outcome measure
- Attention to good measurement principles (validity and reliability) can minimize variability and increase assay sensitivity

Assay sensitivity

A property of a clinical trial defined as the ability to distinguish an effective treatment from a less effective or ineffective treatment.

International Conference on Harmonization, E10: Choice of control groups and related issues in clinical trials.

www.fda.gov/downloads/regulatoryinformation/g uidances/ucm125912.pdf

Assay sensitivity

- Requires adequate statistical power
- Power is a function of
 - Sample size
 - True magnitude of the effect
 - Variability of the outcome assessment
 - Significance level (alpha)

Options for decreasing sample size while keeping power fixed

- Lower the variability (and SD) of the outcome assessment
- Increase the magnitude of the treatment effect

4 Types of Clinical Trial Outcome Assessments

- Clinical Outcome Assessments
 - Patient reported (PRO)
 - Clinician reported (ClinRO)
 - Observer reported (ObsRO)
- Biomarkers

Outcome Assessment = "Concept" for "Context of Use"

- **Concept** = the "thing" that is measured
 - Score = Concept = Claim
 - Latent (pain intensity) or Observed
 - Direct or indirect measure of treatment benefit
 - Treatment benefit = how patients feel and function
- Context of Use = the components of the study objectives and design that influence the claim (eg, population, disease, endpoint)

What generates the variability of any outcome assessment?

- Patient variability
- Measurement error (random only)
- Measurement mistakes (systematic, nonrandom)
- Experiment error

ICH E5 Ethnic Factors in the Acceptability of Foreign Clinical Data

- Ethnic factors relate to race or larger populations grouped according to common traits and customs
 - May affect a product's safety, efficacy, dosage, and dose regimen
 - The impact can vary depending upon the product's pharmacologic class, indication, age and gender of the patients, probably many other things
- Ethnic factors are classified as
 - Intrinsic or Extrinsic
- Study results are reviewed for important heterogeneity in response related to these factors

ICH E5: Classification of intrinsic and extrinsic factors

Appendix A: Classification of intrinsic and extrinsic ethnic factors

INTRINSIC		EXTRINSIC	
Genetic	Physiological and pathological conditions	Environmental	
	Age	Climate	
Gender	(children-elderly)	Sunlight	
Hei	ght	Pollution	
Bodyweight			
	Liver	Culture	
	Kidney	Socioeconomic factors	
	Cardiovascular functions	Educational status	
ADME		Language	
Receptor sensitivity			
Race		Medical practice	
		Disease definition/Diagnostic	
Genetic polymorphism		Therapeutic approach	
of the drug metabolism		Drug compliance	
	Smoking		
	Alc	onol	
	Foo	d habits	
Genetic diseases	Diseases St	Regulatory practice/GCP Methodology/Endpoints	

Intrinsic Heterogeneity Includes:

- Genetics
 - Sex
 - Race
 - Genetic diseases
- Pathophysiological conditions
 - Age
 - Organ function
 - Disease subtype and severity
 - Comorbidities
- Phenotype

Extrinsic (Environmental) Heterogeneity Includes:

- Culture (SES, occupation, education)
- Language
- Personality (eg, willingness to disclose, attention to detail)
- Medical practice norms
- Disease definition
- Therapeutic approach
- Concurrent meds
- Clinical trials/GCP/regulatory environment
- Data collection format
- Instrument format and content

Heterogeneity: Intrinsic versus extrinsic factors

- Important variation of both intrinsic and extrinsic factors
- Most focus on intrinsic factors
- Extrinsic factors often overlooked and may not be addressed by randomization
- Primary and key secondary endpoint assessments need to be well-defined and reliable in all subgroups to avoid measurement mistakes

Impact of Heterogeneity of Treatment Effect Findings

- Non-approvals because of regional heterogeneity, OR
- Need to request more data or another study because of regional heterogeneity, OR
- Need to include information in labeling about regional heterogeneity

Example of Need for More Data Satraplatin and Prednisone Against **R**efractory **C**ancer (SPARC)

- Proposed Indication
 - Treatment of patients with hormone refractory prostate cancer (HRPC) who have failed prior chemotherapy
- Study design
 - Multinational (16 countries), randomized, double-blind, placebo-controlled
 - Patients randomized to either: satraplatin + prednisone OR placebo + prednisone every 5 weeks

FDA: July 2007 Oncologic Drugs Advisory Committee Meeting

Pain Progression

- Definition of worsening based on 2 consecutive 7-day averages of pain intensity OR analgesic use compared to baseline
- Present Pain Intensity (PPI)
 - Report average pain intensity over the past 24 hours:
 0-None
 - 1-Mild
 - 2-Discomforting
 - 3-Distressing
 - 4-Horrible
 - 5-Excruciating

Percentage of Patients With Pain Progression

Percent of Pain Progression Attributed to Increased Analgesic Score

Validation

- There is no such thing as a validated measure
 - Validation results apply to the concept in the context of use tested, not to the instrument
- Traditional approach addresses reliability before validity
- PRO guidance approach recommends that validity is confirmed before psychometric testing (reliability, construct validity)

Validity

- Evidence to support the conclusion that
 - The score represents the intended concept in the context of use studied
 - The items in the assessment adequately cover the "thing" being evaluated
- Decreased validity leads to increased variability

- How can the variability of a clinical outcome assessment be minimized?
- Qualitative research in the targeted respondents (patient, clinicians, observers) to support content validity
 - Subject variability identified
 - Contributors to measurement error identified
 - Measurement mistakes avoided
 - Contributors to experiment error avoided

Patient Heterogeneity Affects Variability

- How patients experience the symptoms of interest (e.g., high pain thresholds)
- Capability for careful self-observation
- Willingness to be truthful in reporting
- Reading level and literacy
- Educational status
- Interpretation of the response scale, e.g., willingness to use the extremes
- Expectation of outcomes

Instrument Attributes Affect Variability

- Clarity or relevance of items
- Literacy level
- Response range
- Response options
- Recall period
- Length of questionnaire
- Formatting, font size
- Length of questionnaire
- Other

Administration Environment Affects Variability

- Diary versus interview
- Privacy of the setting
- Time to complete questionnaire
- Invasive questions
- Interviewer behavior and interaction
- Need for physical help in responding
- Other

Increasing Reliability

- Decrease random error
 - Training, eliminate extremes, improve scale design (eg, ePRO)
- Address subject variability
 - Eliminate ceiling, floor and wasted items
 - Add more items in relevant portions of the scale
 - Alter response options to fit the population
- Increase the number of items on the test 25

Wasted items may decrease reliability

	Response		
MSWS-12 Item	Off Fampridine	On Fampridine	
1. Ability to walk	Quite a bit	Moderately	
2. Ability to run	Extremely	Extremely	
3. Ability to climb stairs	Quite a bit	Moderately	
4. Made standing difficult	Moderately	Moderately	
5. Limited balance standing or walking	Quite a bit	Moderately	
6. Limited walking distance	Quite a bit	Quite a bit	
7. Increased effort needed to walk	Quite a bit	Moderately	
8. Support walking INDOORS	Quite a bit	Moderately	
9. Support walking OUTDOORS	Quite a bit	Quite a bit	
10. Slowed your walking	Quite a bit	Moderately	
11. Affected how smoothly you walk	Quite a bit	Quite a bit	
12. Concentrate on walking	Quite a bit	Quite a bit	
6 items change (order: 1,5,7,8,3,10)			

Source: Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee, October 14, 2009, www.fda.gov

More items may reduce standard deviation

Correlation coefficients between BPI pain scale and MDASI pain worst

	Month 0	Month 3	Month 6	Month 9	Month 12
r	0.805	0.789	0.887	0.948	0.950
Р	<.0001	<.0001	<.0001	<.0001	<.0001

Intraclass correlation (ICC) of month 3 and 4

	ICC (95% CI)	Mean (SD)	
		Month 3	Month 4
BPI pain scale	0.824 (0.689 – 0.903)	1.61 (1.89)	1.73 (1.85)
MDASI pain worst	0.819 (0.681 – 0.901)	2.15 (2.38)	2.30 (2.20)

Source: Cleeland C, PRO Consortium Workshop, Silver Spring, March 2011.27

Summary

- Reduction of variability is the next frontier in better measurement and clinical study efficiency
- Small effect sizes demand attention to variability of the outcome measure
- Attention to good measurement principles (validity and reliability) can minimize variability and increase assay sensitivity