

Ruprecht-Karls-Universität Heidelberg

Translating Preclinical Targets to Human Experimental Models of Analgesic Efficacy in Healthy Volunteers

Martin Schmelz

Martin Schmelz Heidelberg University, Mannheim, Dept. Anesthesiology

Human pain models: what is the mechanism of pain to be modelled

Painful neuropathy

Sites of sensitization/ spontaneous activity

Sites of desensitization

Spontaneous pain
Peripheral sensitization
Central sensitization

Hyp- Anaesthesia
Hyp- Analgesia
numbness

Separating pain intensity and degree of neuropathy

Neuropathy

Clinically relevant read outs for the models

Excitation thresholds

Supra-threshold encoding - "evoked pain"

Spontaneous activity - "spontaneous pain"

Microneurography technique

A-fiber response

C-fiber response

More spontaneous activity in nociceptors in painful vs. Non-painful neuropathy

Spontaneous activity of nociceptors correlates to pain level in patients spontaneously active C-nociceptors 30 recorded by microneurography 25 % of C-fibers 20 15 10 5 0 no pain no-mild pain moderate to severe pain desensitized C-nociceptors 25 20 % of C-fibers 15 10 5 0 diabetic neuropathy young healthy healthy elderly neuropathic pain mild pain (n>100) (230 fibers, moderate to severe pain 15 subjects) (163 fibers, (228 fibers, 11 patients) 7 patients)

Dissecting neuropathy and pain

Neuropathic pain patients in microneurography:

- Correlation of pain intensity and spontaneous activity
- Sensitization of mechano-insensitive nociceptors

Effects of Nerve Growth factor in human skin

(1µg/50µl, n=16)

Acute effects:

no spontaneous pain, no axon reflex flare, no inflammation

Long term sensitization

- rapid heat hyperalgesia (peak at day 3)
- mechanical hyperalgesia to impact (peak day 21)
- static allodynia, but no brush evoked allodynia
- no secondary hyperalgesia
- no sensitized axon reflex

Rukwied et al. Pain, 2010

Electrical hyperalgesia at NGF injection site

No correlation between axonal hyperexcitability and heat pain threshold

Correlation of axonal hyperexcitability and mechanically induced pain

NGF sensitization model in humans

- Localized sensitization no secondary hyperalgesia to brush or pin-prick
- No enhanced axon reflex flare at the NGFinjection site

 Augmented pain upon electrical stimulation at day 21 - axonal sensitization NGF induced sensitization in human pharmacological intervention

Microdosing
Local injection of 150 µl of Lidocaine 0.1 or 0.01%

NGF - heat hyperalgesia: sensitization by lidocaine

NGF- mechanical hyperalgesia: more sensitive to lidocaine

Rukwied Weinkauf

conclusions

Long lasting local sensitization
Non-inflammatory
Long lasting hyperalgesia suitable for microdosing approach

 Increased responsiveness to chemical stimulation (low pH and cowhage)

UVB-induced sensitization in human

UVB induced sensory sensitization

UVB induced axonal sensitization

UVB-induced sensitization in human

- Primary hyperalgesia to mechanical and heat stimuli
- Axonal sensitization

Combination of NGF and UVB

UVB in NGF pre-sensitized skin

Sensory and axonal sensitization

conclusion

- Key read outs: spontaneous pain suprathresholds encoding
- UVB and NGF models provide patterns of sensitization that reflects some aspects of pain patients
- Mechanisms in patients still unknown

anesthesiology

J. Schüttler W. Koppert M. Angst, Stanford T. Gordh, Uppsala

neurology F. Birklein, Mainz H. Krämer, Mainz A. Bickel P. Kokotis, Athens

microneurography

- C. Weidner
- **B.** Namer
- R. Carr
- H. Handwerker
- K. Östravik, Oslo
- E. Jorum, Oslo
- I. Kleggetveit, Oslo
- M. Hilliges, Halmstadt
- R. Schmidt, Uppsala
- E. Torebjörk, Uppsala

pig lab Mannheim

- M. Petersen
- O. Obreja
- **R. Rukwied**
- A. Klusch
- E. Forsch

Single fiber ephys, primate

M. Ringkamp, Baltimore

basic idea of experimental models

