# ACTTION - CONCEPPT MEETING ON SMALL FIBER NEUROPATHY 

April 5, 2018

A Matter of Record (301) 890-4188




```
or eight years.
For any of you who are interested, the funds have come from two contracts from FDA and two cooperative agreements. We're currently in the second year of a five-year cooperative agreement and towards the end of a five-year contract that we hope will be renewed next year. The FDA contracts and FDA cooperative agreements give us different kinds of prerogatives, so it's nice to have both a contract and cooperative agreement simultaneously. In addition to funds from FDA, we get unrestricted support from industry, and we also have a little bit of philanthropy and a little bit of royalties from outcome measures that have been published under the auspices of ACTTION.
So I want to end these remarks by just saying that we're very proud that ACTTION has now, since it was launched in 2010, published over 80 articles in peer-reviewed major journals, journals that you are all familiar with: neurology, anesthesiology, pain, Journal of Pain. So we are very proud of that milestone. I think it's about
```

Page 10
85 publications as of this morning.
If you're interested in any other
information about ACTTION, the website is really
quite comprehensive, and it's ACTTION with two
T's.org. I want to answer any questions, so if you
have any questions, raise your hand. But before I
leave the podium, I want to say that the CONCEPPT
consortium, which is responsible for the disease
modification in the peripheral neuropathy component
of ACTTION, has been led by Roy and Jen Gewandter for the last five or six years, and I just think
they've done a fantastic job. And without Roy and
Jen's efforts, we wouldn't be here. And I'm sure
this is going to be a great meeting because of all
the work they've put into it.
So thank you very much, welcome, and does anybody have any questions about ACTTION or what it does?
(No response.)
DR. DWORKIN: Thank you.
Presentation - Roy Freeman
DR. FREEMAN: Thanks, Bob, for setting up

Page 11
1 the meeting.
2 What I want to do is to in the next -- I
3 have been given 45 minutes, and it will be far, far
4 less, so we can get the meeting going -- is really
5 set the stage for what's going to proceed over the
6 next two days.
7 Now, for those of us in the field, it is a
8 very exciting time for small fiber neuropathy. The
9 small nerve fibers for decades were regarded as 10 invisible, inaccessible, unmeasurable. But over 11 the past maybe 10, 20 years, suddenly they have 12 emerged from darkness, and now almost every 3 neurology department has somebody there who is 14 capable of assessing, measuring, and is interested 15 in these small nerve fibers. But as a consequence
16 of those years of darkness, the entity, the
7 disease, small fiber neuropathy, was poorly
18 understood, poorly studied. Patients who had the
19 disease were inadequately treated, and that has
20 changed dramatically.
21 Now for the first time we have target-based
22 therapies addressed at patients who have small

Page 12
1 fiber neuropathy, a very, very exciting change.
2 And this change is in large part due to the
3 emergence of structural and functional measures to
4 address the small nerve fibers, both the small
5 sensory nerve fibers and the autonomic fibers. And
6 I think it is because of that, that we are here
7 today.
8 I want to very briefly touch on what
9 CONCEPPT is. As you may have gathered, somebody in
10 the ACTTION framework is a lover of misspelled
acronyms --
(Laughter.)
DR. FREEMAN: -- or perhaps just has a
typewriter with a sticky key.
CONCEPPT is the Consortium on Clinical
16 Endpoints and Procedures for Peripheral Neuropathy
17 Clinical Trials. This emerged, as Bob
18 suggested -- Bob Rappaport has been a driving force
19 for ACTTION and all of the subsidiaries under
20 ACTTION, and some years ago, he raised awareness of
21 the fact that there is no drug approved in the
22 United States for axonal peripheral neuropathy.

And if I were to envision what CONCEPPT is about,
it is to provide the framework -- and I think Bob
touched on this briefly -- the framework for the
development of drugs for axonal peripheral
neuropathy so those patients who have those
devastating diseases that are a consequence of
axonal peripheral neuropathies, we'll have
therapies to address them.
When I say we, the co-director Jen Gewandter
and I have taken a field of dreams kind of approach
to it, that we want to provide the framework, and
hopefully as a consequence of that, from academia,
from industry, we will have the drugs to treat
these devastating diseases.
To touch very briefly on some of the
activities over the past couple of years, we have a
series of papers that, as Bob mentioned, have been published here on Measurement Tools for Peripheral
19 Neuropathy, again, establishing the framework; one
20 on the Content Validity of Symptom-Based Measures,
21 which was published in Muscle and Nerve; a
22 manuscript in preparation with Chris Gibbons and

Page 14
Jen Gewandter on clinician related sign measures
for peripheral neuropathy; just published in
Neurology last year, an overview with
chemotherapy-induced peripheral neuropathy clinical
trials; and a manuscript, which has received the
first set of very good reviews and I'm sure will be
published in Neurology on clinical trial design for
the prevention of chemotherapy-induced peripheral neuropathy.
10 So that's where this stands at the current point, and then finally -- oh, how could I forget? Just last year, we had a meeting at the end of the year, a number of the audience members were there, on developing the taxonomy for diabetic peripheral neuropathy. I should not use the word "developing," "refined" because we are building on the shoulders of giants. There are several taxonomic approaches to diabetic peripheral neuropathy, but we wanted to modernize this for the future, and we are hoping that at least two manuscripts will come from that meeting.

Finally, the present meeting, and Simon

1 Haroutounian is working on a systematic review on
2 clinical trials and inclusion/exclusion criteria,
3 up until this point in time, on small fiber
4 neuropathy. And we hope to come out of this
5 meeting with a case definition, inclusion/exclusion
6 criteria, for small fiber clinical trials. And
7 that really is our charge today. We will stray
8 from that charge just a little on either side, but
9 if I were to think of what we at the end of the 10 meeting want to accomplish, it will be that.
1 So let me now begin to talk a little about 12 the roadmap for the meeting. And you have your agendas in front of you. What I want to do in the next couple of minutes is just touch on what I think the issues are where perhaps there will be some areas of controversy. And this I hope will be one in which there is no controversy at all. We will begin by discussing the epidemiology and the dimensions of the problem. Rob Singleton will be doing that. He will be discussing national differences. He will be talking about impaired glucose tolerance, the epidemic that exists around

Page 16
1 the world and how that fits in to our concepts of
2 the epidemiology of small fiber neuropathy.
3 Then at another point, but I think it gels
very nicely with the epidemiology, Gordon Smith
5 will be talking about the laboratory workup for
6 small fiber neuropathy, what do we need to do? How
7 much is enough? When do we define a peripheral
8 neuropathy, and here in this case specifically,
9 small fiber neuropathy, as idiopathic? What
10 combinations of tests are necessary? What about,
11 again, the neuropathy at the meeting we had in
12 December? We decided it should be called the
neuropathy associated with, carefully chosen, not
caused by, impaired glucose tolerance.
Does this mean that every patient in a trial for small fiber neuropathy needs to have a glucose tolerance test? Because the epidemiology or the prevalence of impaired glucose tolerance is so vast, is it just that we have a very common disorder associated occurring in conjunction with a less common disorder, and these are not causal? Is idiopathic peripheral neuropathy
compatible with impaired glucose tolerance or are
these two different entities? As we've learned, we
will talk about the various polymorphisms or even
inherited disorders for Reye's disease that are
associated with small fiber neuropathy.
Do we consider a patient with a sodium
channel polymorphism as having idiopathic small
fiber neuropathy or is this a new discrete entity
and we should no longer consider this small fiber
neuropathy? And what about a patient who had a potential cause of a small fiber neuropathy? For example, B12 deficiency. It was treated a number of years ago. Can a patient like this enter a clinical trial? Is this an idiopathic small fiber neuropathy or are patients like that excluded from clinical trials?

We have now entered the molecular era with small fiber neuropathy, and a question that must be asked is, is it obligatory now in this era to genotype every patient that enters a small fiber neuropathy trial? Do we need, in conducting a clinical trial, to balance or stratify

## Page 18

randomization based on the genotype? What are the
therapeutic implications? Are different drugs
going to work or not work in patients who have different genotypes?

How do we tie the beautiful, elegant work that comes from the Netherlands, comes from Italy,
with this study that was done from the PNRR? It's
a different methodology. It's a registry study,
but is discordant with the results that come from
Italy, and I'm sure this will be an area of Italy and the Netherlands. I'm sure this will be an area of discussion.
13 All of us in the field have been challenged
14 by patients who appear in our clinics either having
15 been treated, or on treatment, or desirous of
16 treatment with immunomodulating therapy, and we
17 will be addressing the question is there an
18 immune-mediated small fiber neuropathy. If so,
19 what is the clinical phenotype? Are there
20 biomarkers, diagnostic biomarkers, for this
21 disorder? Are there predictives of treatment
22 response for this disorder? And we have a number

1 of experts in the audience who will be discussing
2 this.
3 Finally, or almost finally, we have a number
4 of questionnaires in various stages of development.
5 Some of these may be screening questionnaires, some
6 of these may be diagnostic questionnaires, some of
7 these may be phenotype-defining questionnaires, and
8 these will be discussed as well.
9 One of the important questions is do we in
10 these clinical trials need disease-specific
11 questionnaires or are the general sensory pain
12 questionnaires, autonomic questionnaires,
13 sufficient at this point in time? And in terms of
14 thinking of the framework, this is a very important
15 part of the framework.
16 The focus of the meeting is going to be on
17 inclusion criteria, and one of the important
18 questions with inclusion criteria is, is a skin
9 biopsy actually necessary for inclusion enrollment
20 in a clinical trial? Now, all of us in the field
21 are totally aware that this is a benign procedure.
22 Many in the audience have pockmark legs from

Page 20
1 repeated skin biopsies --
2 (Laughter.)
3 DR. FREEMAN: -- and are very aware that
4 this is, as we say in the field, a benign
5 procedure. However, there is the consensus out
6 there that somewhere between a liver transplant and
7 a heart transplant lies a skin biopsy --
8 (Laughter.)
9 DR. FREEMAN: -- and we have members of
10 industry in the audience, and it is a barrier to
11 clinical trial inclusion. And there's no doubt
12 that those who are in the drug development business
13 would love it if we could say, well, this is a very
14 reasonable substitute for skin biopsy. And indeed,
15 Giuseppe Lauria, who is sitting at the back very
16 quietly, in his disease-defining criteria said two
17 of the following three, and only one of those three
18 was skin biopsy. So it is using those very widely
19 used criteria to define small fiber neuropathy
20 possible to exclude skin biopsy. But if we decide
21 that skin biopsy is objective and it is obligatory,
22 can it be done by everybody?
examination in general, or just a clinical
examination?

What about bedside QST? My group and a number of the groups have attempted to come up with a simple, quantified sensory examination using very simple equipment that can, perhaps for those who do

Page 22
not have the \$30,000 equipment, allow them to do that quantitative sensory testing.

Autonomic testing. David Herrmann has published two articles on autonomic testing or autonomic test results as criteria for small fiber neuropathy, and conclusions of this work are that this is the holy grail. It increases sensitivity without decreasing specificity. Is this something
that we should be more insistent of including in
the diagnostic criteria for small fiber neuropathy?
And the new kid on the block, corneal confocal microscopy, where does this fit in? How do we use
it as inclusion and exclusion criteria?
How about the exclusion criteria? And I'll touch on just two of them. Nerve conductions studies, again thinking of those people that are in the business of drug development. Does every patient who enters a small fiber neuropathy clinical trial need to have nerve conduction studies in order to exclude any large fiber dysfunction?

Again, referring to Giuseppe's criteria,

1 they were quite fitting with his character, very
2 hard-nosed, rigid, and in those criteria excluded
3 all signs and all features of large fiber
4 neuropathy, including the necessity of having nerve
5 conduction studies being normal. Nerve conduction
6 studies, for those who are not in the field, of
7 course only assess large fibers. And what about on
8 the clinical examination? Do we permit in a
9 clinical trial any large fiber dysfunction?
10 Well, there's more than enough to talk
11 about. As I present all of this, I'm not sure that
12 we are going to have nearly enough time, but we 3 will of course do the best we can.

14 Let me, before getting things underway, give some housekeeping rules. The usual, keep your cell
16 phones quiet. Microphones are voice activating.
7 Please speak directly in the microphone. State
your name before speaking. This is kind of
19 important. The meeting is going to be recorded,
20 and there will be a transcription, which will help us write the paper or papers afterwards, so please, the people transcribing will not recognize voices,
accents, so please state your name, and we will
2 remind you as the meeting goes on.
3 Sign in if you haven't done so. Lunch is in the Dupont Room, the conference level. You see the
internet access code. Restrooms are located
outside of the meeting room to the left. And
Valorie and team -- who have done a fantastic job,
and just in case I don't thank them at the end of
9 the meeting, I think we all recognize what a
10 wonderful job they've done so far -- they are
available for assistance at the registration desk.
Well, that's all I have to say at this
point. One last thing to say. For those of you
who have not been at meetings like this before,
they are highly interactive. There is no firewall
between the audience, the panel, and the speakers.
Everybody is expected to -- it's part of the price
of entry -- participate very actively no matter
where you are sitting in the room.
So we expect a very exciting and interactive
meeting, which then brings me to the first speaker
of the day, which is going to be Rob Singleton, who
will be talking about the epidemiology.
Presentation - Robinson Singleton
DR. SINGLETON: Thanks, Roy.
It's really very exciting to be asked to
present to you, to this group, something about the
epidemiology of small fiber neuropathy. Let me
just say that I can thank Roy, but I can also kind
of curse him because this turns out to be a very
difficult subject, and we're going to talk a little
bit about why it's so difficult. And Roy's touched
on some of these aspects already, but I think we'll
just kind of stumble through this for the next
25 minutes, and then we'll take questions. Let me
say, I have no conflicts of interest to disclose.
I started this really as a series of
questions that I wanted answered. And let me just
state right out in the front that basically I have
failed in answering any of these questions for you,
so you will have --
(Laughter.)
DR. SINGLETON: -- just take that for what it's worth. But we'd like to know what fraction of

Page 26
all neuropathies we consider as small fiber
neuropathy. What does that mean? And this comes
back to Roy's point, that the definition of small
fiber neuropathy is critical to answering this
question. What are the most common causes of small
fiber neuropathy? I think we'll focus on this
aspect most intensely over the course of this talk.
Recognize that a large fraction, some
unclearly defined fraction, of small fiber
neuropathy or neuropathy in general remains
idiopathic despite very careful efforts to phenotype these patients.

Do these patients have a distinct prognosis?
Do they have different implications for their
treatment? I think that's crucial for us to
understand in order to understand what's the market
for the treatment of small fiber neuropathy. We
want to be able to include those patients. Do they
have a different natural history than other
patients? In the same way, we need to know whether
pain makes a difference in terms of patients'
2 response to this. Is there anything different

1 about the biology of patients who have painful
2 versus non-painful neuropathy?
3 Let me just start with the working
4 definitions that I used when I went through this
5 because I think they're important. First of all,
6 I'm going to talk about neuropathy. That is what I
7 mean when I say systemic, length-dependent,
8 typically, injury to peripheral nerve.
9 There's this obvious distinction between
10 small fiber predominant neuropathy in which
11 features of small fiber dysfunction are a prominent
12 portion. Basically, in the literature it means
3 painful. So if you have pain, that's a marker for
14 small fiber neuropathy that is one of the easiest
15 things to recognize versus a pure small fiber
16 neuropathy in which, as we'll come around to
7 talking about, Karin Faber and her group have
18 really focused on. This is only involvement
19 spinothalamic sensory features.
Let me just say, Chris, this is a talk about
21 somatic sensory injury, and I'm leaving it to you
22 to discuss autonomic abnormalities. But the idea

1 that neuropathy is rigorously defined as affecting
2 spinothalamic fibers but not dorsal column fibers,
3 and that you've done something to prove that you
4 don't have that large fiber involvement, I think
5 that really is a very separate animal in terms of
6 its epidemiology.
7 Just to illustrate a couple of these
8 concepts, if you look at the causes of neuropathic
9 pain, some of the most important ones aren't
10 actually neuropathy. They are zoster, and cancer
11 associated pain, and spinal cord injury. These
12 take up more than half of the defined causes of
13 neuropathic pain. So we have to decide what is it
14 that we want to focus on. For this meeting, I
15 think we're talking about length-dependent
16 neuropathy.
17 Another issue is that racial diversity and 18 geographic diversity of neuropathic pain is
19 enormous, so this large epidemiologic inquiry about
20 the report of neuropathic pain of all types
21 suggests dramatic differences across age and across
22 ethnicities.
$1 \quad$ Here is my working list of relevant causes of small fiber neuropathy in no particular order in terms of their frequency or prevalence. I think all of you are very familiar with these, and we'll touch on some of the ones that are particularly common.

Type 2 diabetes is certainly the obvious 800-pound gorilla of small fiber neuropathy. In all of these, as I go through them, one of the things I couldn't find is like a list of neuropathies and their prevalence. So as part of my preparation for this, I've actually done an attempt, just looking back at the literature, to create that list for us. So we'll talk for these about the prevalence of each causative entity, the frequency of neuropathy associated with that causative entity, and then some guesstimate on my part about what fraction of those neuropathies, say for diabetes, are actually small fiber predominant.

Again, to just keep things manageable, I've really focused these numbers on the United States and the prevalence here, but I recognize that over

## Page 30

the world, there are very different prevalences, and we'll touch on that in some other causes of neuropathy.

Here, diabetes is a dramatic problem. The lowest estimates now are about 31.5 million
Americans, or 14 percent, have diabetes, type 2
diabetes. My guess is that a quarter of those
patients have a clinical small fiber neuropathy
phenotype in which pain is a prominent feature. So
that gets us to an overall burden of about
8 million patients with type 2 diabetes who have neuropathy.

This is just to point out that the
prevalence of diabetes and therefore neuropathy
varies widely in countries across the world but
also populations within the United States. Off the
top because it's a smaller prevalence is well-to-do white Americans who have a diabetic prevalence of around 6 percent. But if you scroll down here to black Americans or Pima Indians, you get into half of the population of those ethnicities, even seeing more. And you can see it here, that between

1 diabetes and impaired glucose tolerance, two-thirds
2 of patients are Pima Indians.
3 Prevalence depends on the type of diabetes
4 you have of course, it depends on the duration of
5 diabetes, and it depends on how old you are. These
6 are not surprising in any way. But this just
7 illustrates the concept that the longer you have
8 diabetes, the older you are, the more likely you
9 are to have a neuropathy in this setting.
10 This is not quite epidemiology, but it's
11 crucial. Neuropathy is expensive, and diabetic
12 neuropathy is one of the best characterized of
13 neuropathies in terms of the burden on patients.
14 This study, which looked at 112 patients in the
15 United States with painful neuropathy associated
16 with diabetes, tried to estimate both the direct
17 costs in terms of clinical care for these patients
18 each year, and then also indirect costs as measured
19 by loss of work productivity, basically. They
20 characterized patients in terms of the severity of
21 their neuropathy and found that even moderate
22 severity cost about \$15,000 a year in that

Page 32
1 combination of direct and indirect costs.
2 I think Roy asked me to give this talk in
3 part so I could talk about pre-diabetes metabolic
4 syndrome and its service as a risk factor for
5 peripheral neuropathy and small fiber neuropathy.
6 Multiple lines of epidemiologic data suggest
7 there's a causative association between the
8 features of metabolic syndrome and injury to small
9 unmyelinated nociceptive fibers.
10 One of the earliest lines of that
11 epidemiologic evidence is looking at patients who
12 have idiopathic neuropathy and finding that a
13 greater proportion than we would expect have
14 metabolic syndrome features. Probably the best of
15 these epidemiologic studies were done by
16 Dr. Noterman and her colleagues in Utrecht.
17 Here in the upper left, you'll see looking
18 at all-comers with painful or non-painful sensory
19 neuropathy who remain idiopathic after a basic
20 evaluation, there was a significant increased risk
21 of meeting definitions for metabolic syndrome.
22 Then down to the lower right is that same data but
shown with each feature of metabolic syndrome
broken out, then comes the same thing that there is this increased risk.

A second line of evidence comes from looking at patients who actually have diabetes, examining the features of metabolic syndrome and seeing how those contribute to risk for neuropathy. In the neuro-diab studies of type 1 diabetics, this looked at patients who had type 1 diabetes, followed them for up to 7 years, and then by doing an analysis that took out age and glucose control looked at other features of metabolic syndrome in order to look at the relative risk for developing new neuropathy in those type 1 diabetes patients. You can see that each feature of metabolic syndrome add some increased risk to the development of neuropathy over this period of time for this carefully performed study.

We've done kind of the same thing in a much better characterized group of patients with diabetes. We've taken patients, about 225 patients, with diabetes and followed them, a third

Page 34
of whom had neuropathy at the beginning. We
followed those patients for up to 8 years in order
to see how features of metabolic syndrome
influenced risk for development of neuropathy and
progression of neuropathy. Here again, you can see
that these features of metabolic syndrome are
predictive of progression of neuropathy and the
presence of neuropathy independent of glucose control.

I guess a last area of epidemiologic data comes from looking at treatment. So if you intervene in patients who have diabetes or prediabetes, does that make some difference to their neuropathy and to their neuropathy risk? The STENO 2 trial is one of the largest studies that took a comprehensive approach to control of metabolic syndrome risk factors in type 2 diabetic patients and found that there was a reduction in risk primarily for cardiovascular endpoints, but there is a little bit of microvascular data,
including some autonomic testing that suggests an effect on peripheral nerves and on small fiber

1 nerves.
2 I would be remiss if I didn't at least point 3 out that we now have a really rich set of animal
4 models that recapitulate the clinical features of
5 small fiber neuropathy in the period of metabolic
6 syndrome before diabetes, and these can be used
7 both to characterize that neuropathy, to look at
8 the biology of those small fibers, and to show that
9 if you intervene by changing the biology, the 10 metabolism in these mice, you can have an influence
11 on the severity of neuropathy on the progression to
12 neuropathy for these rodents. I think these models
3 are good enough now that they have the opportunity
14 to serve as a real translational entry way to human 15 treatments and how we use them.
16 The most specific and the least convincing,
17 I think, of thee epidemiologic mechanisms or
18 epidemiologic studies for prediabetic metabolic
19 syndrome is to look at patients who have these
20 different aspects of glucose control and directly
21 measure how many of them have small fiber
22 neuropathy. Dan Ziegler has probably done this

Page 36
1 best in my mind. He looked at 200 controls in 200
2 patients with various levels of abnormal glucose
3 control and found that there was an excess number
4 of patients who had both neuropathy and also
5 neuropathic pain as patients stepped from controls
6 to diabetes.
7 A much larger study done by Brian Callaghan 8 looked at 2400 patients in the Health ABC study and
9 found that, basically, each additional factor of
10 metabolic syndrome added about 1 percent to your 1 risk for neuropathy.
12 I think Roy's CONCEPPT meeting in December
13 really helped us to begin addressing how we should
14 consider patients with prediabetes. As Roy
15 mentioned, we came to the understanding that we
16 should talk about this as an association. It's I
7 think one of multiple risks for small fiber
18 neuropathy that should be considered when
19 considering the cause of neuropathy in these 0 patients.
21 Moving on to type 1 diabetes, this is the 22 much less common cause of neuropathy, but still
probably 400,000 patients in the United States have
a small fiber neuropathy associated with their type 1 diabetes.

I just want to put in a plug here for the
rare but perhaps underrecognized treatment-induced
neuropathy in diabetes that Chris Gibbons and Roy
Freeman have helped us to recognize in patients who
have diabetes and have too rapid a correction of
their hyperglycemia.
Now I'm going to get into neuropathies that clearly are associated with small fiber injury,
which have a different distribution across the
world, which I think need to be recognized as
important causes globally but challenging targets
for treatment.
Neuropathy associated with HIV infection, the overall prevalence is about 0.8 percent across the world. Different studies found a widely disparate frequency of neuropathy associated with HIV from 9 to more than 60 percent of patients.
Risk factors are ones very similar to diabetes and pre-diabetes in the sense that duration of HIV and

Page 38
older age predicts the development of small fiber neuropathy in these patients.

We're kind of working our way in order of
prevalence, and this is quite a diverse list. But
chemotherapy-induced polyneuropathy is a
surprisingly common cause of painful small fiber
neuropathy. It's very difficult, I think, to get
at the true prevalence of this disease because it's
complicated. The best estimates are that 485 out
10 of every 100,000 patients will have new -- or
people will have new cancer diagnosis in a given
year; 171 of those patients in any given year. So
there's some residual survivors who make up the
prevalence, and that number varies widely. It
might be as much as 5 percent of the population who
are cancer survivors in this setting.
Roughly 20 percent of patients who have cancer have a cancer that's treated with
chemotherapy that may be neurotoxic. So you take
that number and then work partly from Noah Kolb
that looks at the frequency of neuropathy in
patients who received chemotherapy. That number is

1 surprisingly high, 40 to 50 percent of patients.
2 So that gets us to this overall burden of perhaps a
3 million patients who are at risk for small fiber
4 neuropathy associated with their chemotherapy over
5 time.
6 Hepatitis -- this is B, but C as well -- has
7 a significant burden of illness, about 230,000
8 patients in the United States. Leprosy, just to
9 illustrate a disease that has a dramatic difference
10 across the world as a risk, there was a time when
11 we talked about leprosy as the most common cause of
12 neuropathy in the world. Those days are gone.
13 Recognize -- it's kind of hard to read
4 here -- the risk across countries is spectacularly
5 different, according to your exposure. In the
16 United States, that risk really is on the order of
7 less than 10 cases per 100,000, and most of those
18 are immigrants in the United States, rare cases of
19 international travel, and then there is beginning
20 to be an indigenous risk for leprosy that comes
21 from armadillos, that I discovered as I read about
22 this, so Texas, be cautious. Clearly, 90 percent

Page 40

1 of patients who have leprosy express a neuropathy.
2 One of the challenges is knowing for any given
3 illness how frequently neuropathy occurs in that
4 illness.
5 The talk really after mine is about the
6 genetics of small fiber neuropathy, so l'm going to
7 touch very lightly on these topics. At least for
8 hereditary sensory and autonomic neuropathies,
9 these are super rare, but there has been increasing
10 interest in sodium channelopathies. And we're
11 going to hear a lot about this I think in the next
12 couple hours, so I'm not going to talk much about
13 it, except to just point out that this is an
4 example of how difficult it is to get a true
5 prevalence for these genetic disorders.
16 Nav 1.7 coded genetic defects are the cause
for some extremely rare gain-of-function
neuropathies, including the scarily named
paroxysmal extreme pain disorder. If you want to
pick something you don't want to have, this is
probably it. And loss of function causes
insensitivity to pain in some patients.

Again, I feel like I'm stealing thunder from whoever gets to talk about the registry, but in the most very recently published data about patients from the peripheral neuropathy research registry, there was nearly -- this graph that I created down here on the lower right, nearly identical frequency

## Page 42

of rare SCN9A mutations across patients with and
without pain, who are either idiopathic or had
diabetes; so really no difference in the frequency
of these mutations that help us understand why some
patients have pain and others do not.
I'll just finish by talking for a second again about efforts to very rigorously look at patients who have pure sensory neuropathy. And
again, the work by Dr. Faber and Ingemar Merkies'
very recently published paper have done an excellent job of taking patients with small fiber neuropathy, looking at those who have pure neuropathy, examining how that diagnosis is made with either quantitative sensory testing or nerve fiber density abnormalities, doing a very comprehensive list of tests that look for the etiology of small fiber neuropathy, and then reporting that distribution.

So in this study of 921 patients, you can see this distribution in which immunologic abnormalities, genetic abnormalities, or metabolic 22 abnormalities feature most prominently. But one

1 clear take-home message for me was that more than
2 half of the patients who underwent this analysis
3 didn't find any obvious recognizable cause for
4 neuropathy.
5 DR. FELDMAN: Rob, could you go back to the 6 previous slide? I haven't seen this paper yet.
7 Does that say, though, that -- what does TTT stand
8 for here, in the bottom?
9 DR. FABER: Temperature threshold testing.
10 DR. FELDMAN: Thermal threshold, so --
DR. SINGLETON: It's a small fiber QST measure.

DR. FELDMAN: So you have like
normal -- like on the right, over 600 people have normal skin biopsies but abnormal thermal --

DR. SINGLETON: That's right.
DR. FELDMAN: I think this turns out to be really important, is we --

DR. SINGLETON: Very important. I'm sure
20 we're going to get around to talking -- this is back to Roy's point, that we need to decide --

DR. FELDMAN: Right.

1 DR. SINGLETON: -- are quantitative sensory
2 measures sufficient to diagnose small fiber
3 neuropathy. What's the role there for that test?
4 And amongst quantitative sensory testing, which
5 ones are adequate. I think those are absolutely
6 questions to discuss.
7 DR. FELDMAN: That's actually a really
8 interesting -- those data.
9 DR. SINGLETON: I think one reason I wanted
10 to bring this up is that this result shows us how
11 much referral bias affects these distributions.
12 This is incredibly, carefully done work, but it
13 still represents an ultra tertiary care analysis of
14 small fiber neuropathy. And compared to population
15 studies, it gets a very different result in terms
16 of what is the most important cause of neuropathy.
An earlier study that Dr. Faber did, in
18 which there was a much smaller group, found that
19 sarcoidosis was actually more common in their
20 population than diabetes as a cause for small fiber
21 neuropathy, and that's because there are
22 sarcoidosis referral centers, so the patients who
come in the door have that much more often. So I
think we just have to be very cautious about how
referral bias affects our evaluation of the epidemiology.

DR. FABER: Again, I add one thing, and that's we hardly find any diabetics because they are not referred to us, so that's very simple.

DR. SINGLETON: Exactly.
DR. FABER If they have a small fiber neuropathy, they're not going to send them to our center, so we cannot state anything about diabetic small fiber neuropathy in these patients.

DR. SINGLETON: Right. And I'm not in any way criticizing this. I think that that's beautiful work. But I think when we review the literature in order to think about the population prevalence or the epidemiology of these small fiber neuropathies, we can't rely too heavily on the data that comes from very careful evaluation in tertiary care centers because it gives us a false idea about those prevalences.

DR. FABER: I do think what you can say is
Page 46
which tests are useful. If you find a patient with
a small fiber neuropathy, for example, you can
steal that out of these data. So some tests are
not useful or do not give any additional
information, and then you can leave it out. For
example, testing for Fabry's disease is useless if
you don't have any other signs compatible with
Fabry. You will never find it.
9 DR. SINGLETON: Dr. Smith and I have done
that same sort of analysis, but just less
beautifully than you, in examining the utility of
different tests. And I think that should inform
our decisions about inclusion criteria.
Yes, Dr. Oaklander?
DR. PELTIER: And it really depends on what the cause is. It's Amanda.

DR. SINGLETON: You have to raise your hand if you want to talk.

DR. PELTIER: But it really depends on the cause of neuropathy because, for example, sudomotor testing is very sensitive in diabetic and glycemic related tests and HIV, but not very good with

1 idiopathic sensory predominant small fiber
2 neuropathy. So it really depends on your etiology,
3 what you're thinking of as to what tests you should
4 include.
5 DR. SINGLETON: I agree. Thank you. That's
6 an important concept. I think one goal we should
7 have is to consider tests that have the opportunity
8 to be sensitive across causes of small fiber
9 neuropathy.
10 Dr. Oaklander?
11 DR. OAKLANDER: So in our paper on this
12 topic, which I think was in 2016, we pulled in the
13 cost data. And I think it was called -- what was
4 it called? I forget. But the point is we're all
5 scientists, and we're all excited by these obscure
16 diseases, but it's naive not to include cost
7 considerations. So we went and actually tracked
18 down the reimbursement codes for these diagnostic
19 tests. For instance, diabetes neuropathy alone,
20 which we all agree is a huge thing, what's the
21 relative value of 2-hour GGT versus fasting alone
22 versus A1c versus random?

Page 48
1 So let's consider cost more in our discussion for value as well.
3 DR. SINGLETON: Yes, Gordon?
4 DR. SMITH: I just want to amplify that.
5 Brian Callaghan has done I think really beautiful
6 work looking at healthcare utilization surrounding
7 neuropathy diagnosis. And it turns out that
8 drivers and the large data sets are really things
9 that we're not going to even talk about today,
10 which are MRI scans, brain MRI scans for small
11 fiber neuropathy, which I think we can agree we
12 don't need. So maybe that's our first consensus.
13 I think when we start thinking about do we
14 need normal nerve conduction studies, do we require
15 skin biopsy and these sorts of things, I think it's
16 really important to differentiate the need in a
7 clinical trial setting versus common clinical
practice because those things really do
cumulatively drive healthcare testing costs for neuropathy evaluation.

DR. SINGLETON: Just to finish the things I
had to say, this represents, for these diseases, my
guess at the minimum prevalence of small fiber
neuropathy in the United States for these diseases
listed in order of overall disease burden. I did
this in part because I think it's important to
recognize just how important this is in aggregate
as a problem to be addressed.
The second thing I want to say is important
lines that are missing from my table are genetic
causes of neuropathy. It's really hard to define
the prevalence, and I don't think that a true
population study of prevalence for sodium
channelopathies or other causes of neuropathy has
been done. And then idiopathic neuropathy is -- in
my experience, in other people's experience, it represents a third or a half of patients who have small fiber neuropathy. What's the magnitude of that if we step away from the burden -- sorry, from the bias of referral patterns? We just don't have a number for that, that I can tell.

These really are challenges and take-home points for me, that the prevalence of small fiber neuropathy depends critically on our definition.

Page 50
And that's why we're having this conference, is to
discuss what that definition should be so that we
can decide what's inside and what's outside of the
tent of our neuropathy in this case. The metabolic
causes probably greatly outnumber other etiologies
when we look at population studies, and that the
true prevalence of idiopathic small fiber
neuropathy remains really poorly defined.
So the things that I think we need are a
population based epidemiology of idiopathic
neuropathy that's based on unbiased referral patterns. I think Brian Callaghan, again, is the person who has exemplified this work of looking at large databases in order to try and find this in a population. I think we should be thinking about how as a group we can amplify that work in order to be even more powerful to get a true idea about this.

We need prospective studies that follow patients with small fiber neuropathy and other common neuropathies to see whether there's a difference in fate or response to treatment if you

1 have a painful or non-painful neuropathy. And then
2 we need additional studies that look at patients
3 with idiopathic neuropathy to discover the
4 importance of sodium channelopathies and other
5 genetic influences on neuropathy because almost
6 certainly, a significant portion of patients who
7 have idiopathic neuropathy now have a genetic 8 influence that we just haven't recognized yet.
9 So with that, I'll take questions. Yes, 10 Gordon?
11 DR. SMITH: I wanted to ask a question that
12 I think -- I might as well get it out of the way
13 now, and that is my concern about conflation of
14 painful neuropathy with small fiber neuropathy.
15 Your beginning and I think your epidemiology of
16 diabetic neuropathy kind of does that. The numbers
17 to me look like you took the percentage of people
18 who have diabetes, who have neuropathy, and then
19 said but half of those have small fiber neuropathy.
20 That's really painful neuropathy, and it may be
21 even lower. Most patients who have painful
22 neuropathy have some degree of large fiber

Page 52
1 involvement, and this goes to really the boundaries
2 of what small fiber neuropathy represents.
3 I don't know if this is the time we should
4 talk about it, but I just wanted to bring it up
5 because it certainly impacts the epidemiology.
6 It's different to say the epidemiology of painful
7 neuropathy is $X$ from saying small fiber neuropathy
8 is Y. That's a bad metaphor.
9 DR. SINGLETON: I have an opinion, but I
10 think you're absolutely right.
11 I don't know. Roy, maybe this is an hour's
12 worth of talk on Friday afternoon, to talk through
13 this question.
14 DR. FREEMAN: No. Clearly, this is a 15 critical topic. I'm not sure that we -- and I
16 think it's hanging over the session. I think it's
17 exemplified by the course that Chris is now
18 directing, and I think it really exemplifies just
19 how interesting this entity has grown. We began
20 this course maybe 10 years ago, and 20 people
21 showed up. And the course was entitled Small Fiber
22 Neuropathy: Sensory, Autonomic, or Both.

2 haven't resolved the issue of definition quite yet,
but I think this is a critical point, and perhaps
we need to begin to refine the way we talk about
this, the way we write about it, and the way we
think about this. And obviously, every clinical trial will need to do this, and I think it's an important focus. And hopefully by the end of the
meeting, we will have come away with more discrete
criteria for differentiating those different parts
of the small fiber neuropathy spectrum.
DR. SINGLETON: Chris?
DR. GIBBONS: I think the point that Gordon raised is perfect, and I actually want to throw out another disease we don't even actually talk about,
Parkinson's disease. We see this really small
fiber neuropathy that's totally asymptomatic, quite
frequently if you look for it, but we don't talk
about it. So just kind of, again, keeping that
theme going.
DR. SINGLETON: Again, reviewing this
literature, there is fairly convincing evidence

Page 54
that patients with Lou Gehrig's disease have a
decrease in their nerve fiber density. Should w
consider that small fiber neuropathy? I think not,
but the harder you look --
MALE VOICE: That's for diabetes --
DR. SINGLETON: -- the more people you include.

DR. OAKLANDER: It's up to us. The field
needs guidelines, and we're the people.
DR. SINGLETON: That's right.
Yes, Dr. Herrmann?
DR. HERRMANN: I think another issue I would say is the issue of age. When people get 75,80 , 85 , I think it gets harder and harder. We always sort of dance around the issue of neuropathy of aging versus just normal findings for age. And I think at a certain point, in terms of clinical trial design, I think at a certain point everyone's losing small fibers. So if you have a density of $X$ at age 83, we call that maybe normal for age, but a person who's 20 years younger has neuropathy.

I think thinking about how to think about

1 the older individual with small fiber signs and
2 abnormal skin biopsies I think will be important
3 because at some stage we may want to exclude people
4 above a certain age because I'm not sure we can
5 really define a small fiber neuropathy entity in
6 those patients well and distinguish that from
normal aging.
8 DR. SINGLETON: I agree. But one thing I
9 would say is a crucial piece of our definition
10 needs to be clinical impact; that is you need to
1 have symptoms. You need to complain of those
12 symptoms. You need to have some consequence for
3 your function. If you don't have those things,
4 then I don't think that's neuropathy.
Okay. Roy looks like he might want me to
16 stop talking.
17 (Laughter.)
18 DR. SINGLETON: Thank you, Roy.
19 (Applause.)_
20 DR. SINGLETON: So a couple of things.
21 There will be plenty of time for questions.
22 There's a one-hour panel, so if you still have

1 questions to ask Rob, and if Rob still wants to
2 keep talking, he'll have another round.
3 It's a pleasure to introduce Karin Faber
4 from Maastricht Netherlands, who, as you've heard
5 several times already this morning, allowed the
6 field to take a giant step forward by defining,
7 together with the group from Milan and the group
8 from Yale, the molecular biology that underpins
9 some patients who previously we thought, or perhaps
10 still have thought, of as having small fiber
11 neuropathy; and specifically by defining
12 gain-of-function mutations in Nav 1.7, and then
13 later 8 and 9. And it's wonderful to have Karin here.

Presentation - Karin Faber
DR. FABER: Thank you very much, Roy. It's
17 a big honor to be invited here and to talk here
18 about the genetics of small fiber neuropathy. And
19 as Roy already pointed out to me, the most
20 important thing is whether we should include
21 genetics or not. So if I would answer this, then I
22 would be on very quickly, but I will talk a little
bit more about a background as well. I don't have
any conflict of interest, but we have some grants
from the European Union and also from a national
foundation on neuromuscular research, and I'm on an
advisory board for Biogen, Vertex, and Chromocell.
A small fiber neuropathy, as you already
heard, is a disorder in which the small nerve
fibers, the A delta and the C fibers, are affected.
And you can have a lot of debate, so far as clear
from the discussion we had, whether this is pure small fiber neuropathy or whether you should have predominantly small fiber neuropathy. And this leads to often very severe pain in combination with autonomic symptoms.

There are a lot of conditions, as Rob already told, that can be associated with small fiber neuropathy, and associated does not necessarily mean it causes neuropathy; that might
be something different. But indeed, the list is growing and growing like in our peripheral neuropathies. When we started working on small fiber neuropathy, we thought, well, how does it

## Page 58

come that all these patients have the same symptoms
and so many underlying conditions or causes could
have been some kind of -- well, one
pathophysiological pathway?
That's when we started looking into the sodium channels, and the sodium channels seemed a logical way to go. You know that the first description of a locus on chromosome 2 was in 2001
for primary erythromelalgia, and then in 2004, the gene SCN9A coding for the Nav 1.7 was discovered in primary erythromelalgia. And later in the same year, also the electrophysiological properties were described by the lab of Steve Waxman.

In 2006, also mutations in SCN9A were described in paroxysmal extreme pain syndrome, which is another painful disorder. That's when we thought, well, maybe this could also play a role in small fiber neuropathy, and we included patients with the typical clinical picture of small fiber neuropathy in combination with an abnormal temperature threshold testing, as well as an abnormal skin biopsy. So those were very strict

1 criteria for patients with idiopathic small fiber
2 neuropathy. And indeed, in a number of these
3 patients, we found a mutation in SCN9A.
4 The electrophysiological properties in these
5 mutations were described. And as you may know, but
6 I'm not sure whether everybody knows, you can test
7 electrophysiology using patch clamp analysis, and
8 there are two ways of doing this. You can have a
9 voltage clamp analyze this, and that's testing the
10 channel function, so meaning you test
11 depolarization, repolarization, and inactivation.
12 And you can also use the current clamp analysis,
13 and with this you test the excitability of the
14 channel. So it means that the resting membrane
15 potential can change, or the current threshold can
16 change, or you can have an increased spontaneous
17 firing or an increased firing frequency.
18 Indeed what we saw was that in these
19 patients you saw abnormalities in
20 electrophysiological properties, so there was an
21 impaired slow inactivation. For example, in this
22 mutation, you can see that in C, the current

Page 60
1 threshold was lowered and also the resting membrane
2 potential was different, meaning the potential was
3 more depolarized. And in F, you can see that the
4 firing frequency is higher in the patient with the
5 mutation, and also there's more spontaneous firing
6 compared to the wild-type channel.
7 This is another family, and this family
8 taught us a lot, and that's why l'm showing this.
9 It's a family in which we saw the proband, and you
10 see a picture of him here. And he showed
11 complaints compatible with erythromelalgia, so red
12 hands and feet, extremely painful, but he also had
13 severe autonomic symptoms, which is not compatible
14 with erythromelalgia but more with small fiber
15 neuropathy. And he also had very small hands and
16 feet and also legs and arms.
17 You can believe it or not, but these are
18 also normative values for your hands and arms and
19 whatever part of your body you can think of, and
20 this was really abnormal. Then his father and
21 other brother, also affected, had the same clinical
22 phenotype, including the small hands and feet,
while his unaffected brother and mother did not
have any symptoms. We now know that he has two
daughters that are now 5 and 7 years old. They
have the same mutation, and they also have the same
clinical phenotype, including pain.
This is the electrophysiology of this patient, and you can see there are marked
differences with the wild-type channel. I'll come
to this mutation later on to show you something else that is important.

SCN9A is also associated with a lot of function mutation, meaning that these patients have a congenital inability to experience pain. This may sound fantastic, but it leads to severe problems, I think even worse than the hyperexcitability.

The Nav 1.7 channel consists of alpha subunit and one or more beta subunits. It is preferentially expressed in dorsal root ganglia and sympathetic ganglia neurons and their actions. It is encoded by the SCN9A. Now compiling this, you can say, well, you have the wild-type channel

Page 62
that's on the right, and then you have the loss-of-
function mutation that's a widespread mutation, and
the channel function is absent.
In small fiber neuropathy, what we see is
gain of function. These mutations are located in
domain 1 and 2, and they show an impaired
inactivation. If you have the patients of the
family with the G856D, the small hands and feet,
they have also an impaired inactivation but also an
increased opening of the channel. In primary erythromelalgia, you can also see the mutations in domain 1 and 2, and they have an increased opening and an impaired deactivation and paroxysmal extreme pain disorder. There's also a gain of function, and these are mainly located in domains 3 and 4, and there's impaired fast inactivation.

This may seem very clear. You have distinct groups, but of course, unfortunately, it's not
always like this. So what we see is that it is
more or less like a spectrum. The paroxysmal
extreme pain disorder is at one end of the
spectrum, but especially for the small fiber

1 neuropathy and the primary erythromelalgia, we see
2 patients that have an overlapped syndrome between
3 the two. The gain-of-function mutation is
4 important in that these are missense mutations, and
5 it is an autosomal dominance inheritance. And the
6 loss-of-function mutations can be nonsense, a
7 frame-shift or splice-site mutations, and these are
8 autosomal recessive inherited.
9 Now that we know a lot about these 10 mutations, we also realize that there's a lot that 1 we don't know. For example, there is large 12 phenotypic diversity. For example, the I228 13 mutation is a mutation in which patients within the 4 same family have a very distinct phenotype. For 15 example, one brother and one sister. The first 16 started with pain in the face and the other with 7 more distal pain, more like a picture that we know 18 of the lengthy pain in neuropathy. And also 19 another patient, there's pain on the scalp, and 20 both had the same mutations.
21 We were able to find also
22 hyperexcitability -- not we, but the lab of Steve

Page 64
1 Waxman -- in the trigeminal neurons. With that,
2 you can explain it, but we don't know why one
3 patient has one phenotype and the other has the
4 other phenotype. So that's still not completely
5 clear.
6 We also know that there is a variable
7 expression of the mutation. Some patients have
8 severe autonomic symptoms, while others have hardly
9 any autonomic symptoms. This was nicely
10 demonstrated also with electrophysiology, but we
11 simply do not know why some mutations do cause
12 autonomic symptoms and others do not.
13 Then these mutations are partly penetrant.
14 There's a large variation in age of onset of
15 symptoms, so some are very young but there are also
16 patients that exhibit symptoms after they are 40,
17 or 50 , or 60 , and some may even not have any
18 symptoms at all. We don't know at this point. We 19 simply don't know what is the cause of this.
20 Also, if you look, for example, the first
21 mutation, that was one of the mutations that was
22 described in the Annals paper, and you can see that
the frequency in our SFN cohort is very low, and
also for the other mutation, it is higher than in
the general population. But we don't know exactly
how this is working, and one can argue, well, are
these disease-contributing variants or are these
risk factors? And I will come to this later on in
the presentation. What we know is that also in the
lab of Steve, they did testing on neurite
outgrowth, and what they saw is, especially in the
I228M mutation, so the second one, there was a
reduction in neurite outgrowth.
If you treat these cells with a sodium channel blocker carbamezapine, you can see that the neurite outgrowth turns back to normal. So this is reversible, and the same is true when you inhibit the sodium calcium exchange. What is very important is, for example, in this G856D -- this is also published -- if you have these cells in
culture for 18 days, you don't see axonal degenerations. So that's figure $A$ and $B$.

DR. FELDMAN: I was going to say what cells? I was asking --

Page 66
1 DR. FABER: It's $A$ and $B$. So $A$ is the wild type and on $B$ is the mutated channel.

If you then depolarize these cells for 4 days, that's $C$ and $D$, you don't see anything happening. So there's no axonal degeneration. If you cause metabolic stress by impairing glycolysis, that's E and F, you don't see anything also for 4 days. If you combine it, then you can see that in the patients with the G856D mutation, or in the 10 channels, you see marked axonal degeneration.
12 not cause in this experiment axonal degeneration,

13 but it is pathogenic. It contributes to axonal degeneration given certain circumstances. So it may be that you call it a risk factor. It may be that you call it a multi-hit model or whatever, but there is something going on.

What is really important is that we realize that not every variant we see is contributing to the disease. You have to be very careful by stating that every variant is pathogenic because 22 it's not, and that requires a very thorough workup,

1 including the functional analysis, in silico
2 testing. But in silico testing on its own is not
3 enough I think, so you have to have a good family
4 history, if possible; the functional testing, good
5 clinical phenotyping. All these things are really
6 important.
7 To make things even more complicated, there
8 are also polymorphisms that are quite frequent,
9 some of them, that also have an influence on the
10 channel function, and these probably influence pain
11 perception; so not being pathogenic, but it can
12 also have an influence.
13 We also described gain-of-function mutations
14 in Nav 1.8 and Nav 1.9 that also contribute to
15 small fiber neuropathy. Of course there may be
16 other genes. I thought this may be important
17 because there was already discussion on the
18 frequency of mutations, et cetera. In our own
19 group of over 1500 patients, we have 1140 patients
20 with a pure small fiber neuropathy, and we found
21 patients with potential pathogenic mutation in
22 SCN9A, 10A and 11A between 10 and 15 percent, and

Page 68
1 that's quite constant over the years now. The
2 first publication was a very small group, but this
3 is quite constant.
4 We also studied the PROPANE study of which
5 Giuseppe Lauria is the coordinator, looking at the
6 role of sodium channels in painful small fiber
7 neuropathy but also in diabetic neuropathy. I
8 think important here is that you can see that these
9 percentages are more or less the same a s in our
10 own population, which is much larger, but you can
11 also see that there's a difference between the
12 painful diabetic neuropathy and the idiopathic
13 small fiber neuropathy. And this means that you
14 cannot simply say that these are the same. I think
15 these are distinct groups and that you need to look
16 at them separately.
This is also underlined by this paper that
18 was already discussed in which 278 idiopathic
19 neuropathy, of which partly was painful, and
20 diabetic neuropathy also 77 percent painful, and
21 the number of gain-of-function mutations was
22 extremely low, and there were no differences
between painful and non-painful groups in the
previously reported gain-of-function mutation.
This means that painful neuropathy is not the same
as painful diabetic neuropathy, and it's also not
the same as idiopathic small fiber neuropathy, the genetic meaning anyway.

From the same PROPANE study, this is a work in progress. If we go to the group that we have
now analyzed, the German painful diabetic
neuropathy population, you can see that we found 51
variants that were unique for the painful
phenotype. This needs to be further analyzed, but there are differences between the painful and the non-painful group.

Of course this leads to a lot of questions that remain unanswered. For example, the penetrant is caused by a difference in genetic background; what are really causes and what are contributors or risk factors, and what is the role of mutations in other genes or the genetic background? Is there a role for sodium channels in other painful neuropathies? We simply do not know at this point,

Page 70
or maybe if other genes and also of course
therapeutic options. We do know that sodium
channels play a role in small fiber neuropathy, and
that it is important to make the diagnosis based on
an integrated approach and that other genes or the
genetic background might play an important role,
and this may also be key to targeted treatment.
8 My main assignment was, well, what do we do
9 with this in terms of trial design? At this point,
10 I think there are too many questions open to say,
11 well, you have to analyze only patients with this
12 mutation or that mutation. Should you include gene
13 mutations in the trial design, it really depends on
14 the kind of trial you are aiming for.
15
16 channel blocker in a trial, it makes sense to do a
17 secondary subgroup analysis on patients with
18 mutations and patients without a mutation. For
19 other trials, it doesn't make any sense at this
20 point I think to do that, and there is so much more
21 that we need to know before we can do any really
22 strong suggestions regarding this.

Page 71
later on.
DR. FABER: In our group, it doesn't make any difference. We check that as well, whether there's a difference in abnormal skin biopsy with or without a mutation, but the percentages are the same.
7 DR. GIBBONS: Hi. Chris Gibbons. I think the work is spectacular. I think one of the things that we're always struggling with as we sort of trickle down from where the initial research comes and where it ultimately ends up, obviously the paper that was just referred to with the PNRR group had a very different frequency of mutations and of unclear relevance. And I think to some of us, when we look at these in our own populations, the frequency with which we may find these mutations seems to be very different than what's reported. And it may be, again, a bias in terms of referrals, et cetera. But then when we do find the mutations, it seems to have nothing to do with at all what we would traditionally think of as a neuropathy.

I'd be curious to see what others'

## Page 74

experiences with this are, but I know it's one of
the challenges in putting this together. And I
wasn't sure if you heard feedback yet from other groups around the world on this.

DR. LAURIA: If I may, I had a comment. The point is that these are -- let's call them variants because we don't actually know what they are. We know that there are some variants compared to our controls. The second thing is that it's a
matter -- this has been a quite large targeted NGS approach, and of course it depends on the filtering that you do. So we have filtered patients based on some clinical criteria and some molecular biology criteria, and in this way, we came up with a number of variants which can segregate into different phenotypes, also comparing idiopathic and diabetic.

But in any case, it is clearly a little bit more complex, and, again, the message it's carrying, has been delivering, is that likely there is a kind of background or susceptibility, which can cluster a subgroup of patients based on the frequency of some variants in the different genes

1 and coding for only the sodium channels that we
2 have analyzed, that we have material to analyze
3 many other genes.
4 DR. FREEMAN: Can I ask a question? I want
5 to just follow up on the question that
6 [inaudible - off mic] asked. I had a similar
7 response when I saw that slide, and I will be more
8 specific. Have you actually looked at loss of
9 function mutation in the potassium channel?
10 DR. FABER: Well, not at this point.
11 DR. LAURIA: We have loss of function only
12 in some patients we've found with the expected
13 phenotype of congenital insensitivity to pain.
14 Actually, we have found in one case a loss of
15 function that was not pathogenic. The protein was
16 nothing, and we did a test on [indiscernible]. So
7 actually, so far, as far as I know, there
18 isn't -- all the variants that are related to pain 19 are amino acid substitution.
20 DR. FREEMAN: Because as you know, there are
21 immune mediators -- [inaudible - off mic] on the 22 potassium channel syndrome [inaudible - off mic].

1 DR. BELL: Can I just ask one more question,
2 Roy, before we move on?
3 Karin, hi. Josh Bell from Biogen. I just
4 have a quick question for those of us in the drug
5 development business. So you showed a lot of data
6 on the involvement of multiple sodium channels in
7 the proposition of pain, the SCN9A, 10A, and 11A.
8 Based on all the work that you've done, would you
9 say that it is more advantageous to develop a drug
10 that targets multiple sodium channels, inhibiting
11 each one to $X$ percentage, or would you rather have
12 one really good drug that inhibits one particular
13 sodium channel?
14 DR. FABER: Well, this is a wild guess of 15 course, but I think that if you hit one sodium
16 channel and do it really good, that it should work.
17 DR. BELL: That would better than --
18 DR. FABER: So Nav 1.7 and Nav 1.8, they
19 work in tandem, so if you block one, you will also
20 influence the function of the other. My guess
21 would be that if you have a good Nav 1.7 blocker or
22 a very good Nav 1.8 blocker, that you will
influence pain irrespective of whether you have a mutation or not.

DR. BELL: You would rather have a drug that
works like that than one that has a 30 to
40 percent inhibition of each one of those Nav channels?

DR. FABER: Yeah, I think so.
DR. BELL: Okay.
DR. FREEMAN: I think that's a topic for the panel. Can you wait, David, for the panel?

DR. HERRMANN: I'll ask it during the panel.
DR. FREEMAN: It's a pleasure to introduce
Ahmet Hoke from Johns Hopkins. He has in many ways driven the peripheral neuropathy research registry and will talk about the results of that study and put it in the context of what Karin has just spoken about.

Ahmet?
Presentation - Ahmet Hoke
DR. HOKE: Thank you.
As Roy mentioned, we've set up a
collaboration a number of years ago with Roy, and

Page 78
later Gordon and Rob also joined this consortium,
which is funded by the Foundation for Peripheral
Neuropathy. We call it the Peripheral Neuropathy
Research Registry, and this is, really, a natural
history study focusing on distal symmetric
polyneuropathy patients, primarily axonal
neuropathy patients. And we had 4 disease
categories that we enroll patients in this cohort:
idiopathic, diabetic, HIV, and chemotherapy-induced
10 neuropathies. This specifically excluded known inherited neuropathy patients, as well as autoimmune neuropathies.

We collect detailed histories, standardized examination, and there's a minimum data set for labs, nerve conduction studies, and skin biopsies.
We collect blood for future genomic and biomarker
studies, and out of this cohort, a number of years
ago -- I think they first approached us about four
years ago now -- Bristol-Meyers-Squibb wanted to
access this data set and collect blood for looking
at -- but the main goal of their study was to
identify a genetically defined subpopulation of

1 peripheral neuropathy patients, whether they could
2 then test specific Nav 1.7 inhibitors.
3 Obviously the rationale is already there,
4 and Karin already went over this, including their
5 studies. BMS basically obtained the identified
6 blood samples from the registry and did sequencing
7 of Nav 1.7, 1.8, and 1.9. These are patients who
8 had peripheral neuropathy. And I think every
9 patient in this cohort had evidence of neuropathy
10 either by nerve conduction studies or by skin
11 biopsies, abnormal skin biopsies. Patients with
12 normal nerve conduction studies and normal skin
13 biopsies were not included in this cohort.
14 The comparison to Karin's first paper is
15 highlighted here. The BMS study was really a
16 little bit untargeted in the sense that we took
all-comers, all idiopathic and diabetic neuropathy
18 patients in the cohort at that time. Right now,
19 our numbers are about 1500 patients, but when these
20 blood samples were taken, we had about 500
21 idiopathic and diabetic neuropathy patients in the cohort.

Page 80
1 The idea was to correlate potential
2 gain-of-function mutations or loss-of-function
3 mutations with either clinical diagnosis of painful
4 neuropathy versus non-painful and also to correlate
5 the incidence of these mutations or variants within
6 pain in each category. Within this group, they
7 also looked at a subpopulation of patients who
8 would have been labeled as idiopathic small fiber
9 neuropathy because they had normal nerve conduction
10 studies but abnormal skin biopsies.
11 In our cohort -- and I think this reflects
12 what Rob and Karin also mentioned -- a majority of
13 the patients in the idiopathic group have painful
14 neuropathy, and perhaps this also reflects the
15 referral bias. Even among the diabetic patients, a
16 large population had painful neuropathy. One other
7 thing is -- and I'm sure other people have also
18 noted this -- in our cohort, patients with painful
19 symptoms in a given disease category tend to be
20 much younger than the older patient populations.
21 Within this cohort, they basically
22 identified a number of genetic variants out of that

450 subjects that was distributed across all three sodium channels. The idea was to look at rare mutations. Most of these coding variants resulted in amino acid changes in all three groups. And one of the things that came out of this study was that these rare mutations, some of the patients actually had multiple mutations; that they're not just unique to one patient that only has mutation
Nav 1.7 but not the others. We had one patient that had rare mutation in all three of them, actually disease-causing mutations. They looked carefully at these variants, and basically they were distributed across the whole protein domains.
And again, these are all considered the rare mutations that are less than 5 percent in the general population.

Let me go back. Four of these rare mutations were actually reported as the gain-of-function mutation that Karin also mentioned, [indiscernible] change in others.

When you look at these, quote/unquote, "know gain-of-function" mutations across the whole

Page 82
population, it was present only in about 3 percent of the cohort that we had. These were primarily in Nav .7, partly because that's where most of the publications have been. Even though I mentioned
that there are some patients who had complex
mutations with multiple -- most of the patients in the cohort had single, rare variants in the Nav . 7 They then compared these non-synonymous, low-frequency variants to reference populations, and they were very similar, and again, similar results with the other sodium channel mutations. I
think this is where perhaps the data from this cohort differs from Karin's and maybe Giuseppe's data set. These mutations were similar to the general population. The only one that was different was that in the Nav. 17 [ph] mutations, the frequency was slightly higher than the reference populations.

Then they looked at the enrichment of these rare Nav mutations in painful versus non-painful categories. And again, this was basically patient-reported classification, so in the patient

1 history questionnaire, the patients are asked about
2 their pain status, and if they said no pain, then
3 they're considered non-painful neuropathy. There
4 was no enrichment across all three Nav channels.
5 Within the idiopathic neuropathy patient
6 population, looking to see if there was any
7 enrichment, again, there was no enrichment in this
8 cohort of idiopathic peripheral neuropathy
9 patients. Again, looking at the rare and missense
10 mutations in the idiopathic small fiber neuropathy
1 patient -- this is a subpopulation of the
12 idiopathic peripheral neuropathy patients, and 3 again, there is no enrichment.
14 Then they looked at the haplotype groups 15 across all three genes, and again, they didn't see
6 any enrichment in painful versus non-painful
neuropathy, and there was no difference in comparison to the reference population. And again, there was no enrichment in the idiopathic subgroup.

In summary, this data set didn't really show 21 any enrichment in the U.S. population of these rare
22 gain-of-function mutations or even other rare

Page 84
1 mutations in either idiopathic neuropathy patients
2 or in idiopathic painful neuropathy patients. So
3 based on this, I know BMS basically stopped their
4 Nav channel inhibitor program perhaps partly based
5 on these results.
$6 \quad$ It's going to be interesting how this plays
out, whether these are really druggable targets or
8 not. The data from families is very convincing,
9 but whether it's in the general population and are
10 there other modifiers that make these more disease
1 relevant will need to be seen. I'll stop. I think 2 this is my last slide.

Amanda?
DR. PELTIER: As part of your study, did you have a chance to collect DNA from any of the family members of the patients to figure out whether or not those variants were -- I mean --

DR. HOKE: That's a very good question. As part of the --

DR. PELTIER: You've been hanging out with Jim [indiscernible] for too long.

DR. HOKE: -- we're not collecting blood
from the family members. As I was listening to
Karin's talk, I was thinking actually if we could
go back to the patients that have been identified
in this cohort with the gain-of-function mutations
and look at the family members -- obviously, I need
to write a separate [indiscernible] before that.
7 (Laughter.)
8 DR. FREEMAN: Can I ask something? This is
9 just [inaudible - off mic] -- carefully done study 10 as Karin and others have done and a registry study.

MALE VOICE: Roy, mic.
DR. FREEMAN: Okay. What I was saying is
there's an enormous difference between a registry
study and a very carefully study done by academic
centers who are devoted to a study. But even so,
looking at the data you showed -- and I think it
was four slides back, how many subjects of the 440
or so do you think came very close to replicating
the kind of patients that they have reported? And
it looked to me like there were only 10 on the slide that you showed.

So what I'm asking is patients who had a

Page 86
pure small fiber neuropathy, normal nerve
conduction studies, no large fiber modality
dysfunction, abnormal skin biopsy, and some other
measure or some other criterion for small fiber
neuropathy.
DR. HOKE: Can you put the slides back? I just want to go back to the --

DR. FREEMAN: It's about three slides back,
the slide that prompted the question.
DR. HOKE: Within the idiopathic -- yes. The pure small fiber neuropathy patients in this cohort is probably smaller than the reports
of -- like Karin's large study with just a pure thousand patients with small fiber neuropathy.

DR. FREEMAN: There are many reasons why there might be differences. I wondered whether one of them might be a type 2 error.

DR. HOKE: Possible. We're looking at all-comers of idiopathic neuropathy patients and all-comers of diabetic neuropathy patients. That was BMS' interest, do you want to treat the tiniest population versus is this really applicable to the

1 large patient population of painful neuropathies
2 across different etiologies. That was the main
3 reasons for this study.
4 DR. FREEMAN: David?
5 DR. HERRMANN: I do think, though, this 6 probably speaks to differences in genetic
7 background because I know at our center, we have,
8 over the last maybe 5, 6, 7 years -- since
9 next-generation sequencing has been available, 10 we've taken every patient who's been younger with
11 an early onset neuropathy, pure small fiber, normal
12 medial plantars, normal surals, and with a clinical
3 syndrome with or without the abnormal fiber
4 density, and l've not found one pathogenic mutation 15 in the sodium channels.
16 So clearly, these patients and families are
17 there, but I think what you'd probably could do to
18 supplement your numbers of pure small fiber
19 neuropathies -- across several centers in the
20 United States that have been doing similarly -- you
21 could probably aggregate some of the data to get a
22 larger number of patients who really match the

Page 88
1 European experience. And it may just be that there
2 are different genetic backgrounds that are at play 3 here.
4 DR. FREEMAN: Karin?
5 DR. FABER: I think that one issue that is
6 not mentioned, and it's very important, is you
7 really have to look at your filtering criteria
8 because if you select variants with a frequency of
9 less than 5 percent, that's not a rare variant. I
10 mean, that's really a big issue I think because we
11 select variants that are less than 1 percent or
12 even less than 0.1 percent. So if you're looking
13 for rare variants, then those are rare variants,
14 but 5 percent or 4 percent, that's not a rare
15 variant. That's a frequent variant.
16 DR. HOKE: They looked at both -- the
17 analysis was done both looking at those variants
18 that are less than 5 percent plus the reported
19 gain-of-function mutations from your papers. And
20 even if you look at just those patient populations,
21 the numbers were much smaller obviously, and there
22 was really no enrichment in those mutations in
painful versus non-painful.
2 DR. FABER: That indeed could be something like a different genetic background.

DR. LAURIA: Also the difference in how the painful and non-painful have been defined because all the times it's very difficult because someone may say zero pain or painless is a non-clinical meaningful pain and so on.
9 DR. HOKE: In our cohort, it's a very simple question. "Do you have pain attributable to your neuropathy?" And if the patient says no, then they are basically classified as non-painful. If they say yes and then they report is it 1 to 10 , and the frequency and duration and so forth -- that's the classification of painful versus non-painful in our cohort. Obviously, probably do you want to consider a patient who says, yes, I have pain but it's only 1 or 2 . Is that really painful versus the ones who say I'm in pain all the time and rates as 10 ?

DR. OAKLANDER: One thing l've noticed is that a lot of these rare patients who come in who

Page 90
have these mutations, I know they have it or I'm
very strongly suspicious of it before I do the genetic testing. We're in the ivory towers, a lot of us. Our recommendations are going to be read by people all over the world and physicians who don't have access to genetic testing, so I think we also have to think carefully about what the role is of expert clinician opinion.

If somebody comes in with a strong family history and red burning feet, and they respond to mexilitine, you have to -- I mean, it's good to do
it if you can do it. I'm in favor of genetic
testing, but I don't know that that you have to do it before you treat somebody.

DR. HOKE: I would actually argue that with
the cost of genetic testing coming down, I'm in
favor of testing every patient that comes before I
even do an EMG or skin biopsy. It's much cheaper.
DR. OAKLANDER: Of course.
(Laughter.)
DR. OAKLANDER: I agree a hundred percent.
Of course, we all do. But we also have to look at

1 the reality that the insurance companies do not
2 agree with that statement.
3 DR. HOKE: I haven't had a single patient's
4 genetic testing rejected. Cost to the patient is
5 only a hundred books for doing whole exome
6 sequencing.
7 DR. FELDMAN: We should really talk about 8 that because we have many more insurance issues in
9 Michigan.
10 DR. FREEMAN: I'm speechless after that 11 comment.
12 (Laughter.)
13 DR. OAKLANDER: So who here has insurance
14 issues with ordering genetic testing for neuropathy 5 patients?
16 (Show of hands.)
17 FEMALE VOICE: Huge.
18 DR. OAKLANDER: Who has no insurance issues?
19 (Laughter.)
20 DR. OAKLANDER: So my point is we want
21 global recommendations and we want to be useful in 22 other --

Page 92
1 (Crosstalk.)
2 DR. FREEMAN: On that note, let's take a 3 break
4 DR. HOKE: -- countries, and we can't assume 5 that everybody has access to genetic testing.
6 (Whereupon, at 10:01 a.m., a recess was 7 taken.)
8 DR. FREEMAN: As we begin, what I would like
9 is for all of the speakers to come up to the front
10 to form the panel. Oh, no. We're not at the panel
1 yet, are we?
12 One of the important roles of the chairman
13 is to actually look at the schedule. Before I
14 introduce the next speaker, one housekeeping
15 announcement to make. And that is, as you know,
16 there is free internet access, and the free
17 internet access is for 35 individuals. If you were
18 to do a prevalence of individuals in the room, you
19 would recognize that there are 29 individuals in
20 the room, and yet many people trying to log onto
21 the internet are unable to do because we appear to
22 have more than 35 people attempting to log on,
which means if you were to do the math, some people
are logging on more than once on more than one device.

So what we request is one device, one
person, if you can manage that, which is a
democratic principle.
(Laughter.)
DR. FREEMAN: And having set that in motion
and talking about voting more than once, let me
introduce Todd Levine, who will be discussing I
think one of the more controversial aspects of the
meeting, and that is immune factors in small fiber neuropathy. I think probably there was some subliminal, subconscious aspect over here wanting to avoid all controversy, that I decided to skip this talk.

Todd, please?
Presentation - Todd Levine
DR. LEVINE: Well, thank you guys for having
me today. This is really going to be a lot of small anecdotal case series because, unfortunately, we don't have any good trials. But I think we'll

Page 94
sort of highlight the fact that many of us here
from our patients treating small fiber neuropathies
with immunomodulatory therapy is something that
they want. I think for the clinicians in the room,
we are looking for those patients that we can help,
so this is a group of patients that we really try to identify.

I think the beginning and the end of this,
we'll sort of make the point as some of the earlier
talks did, but I think unless we get accurate and
smaller definitions of these disorders, we'll never
really going to be able to find anything that works
for the groups as a whole.
A couple of disclosures, I work, by
consultants and from the grant support, with some
of the IVIG companies, so Shire, Grifols, and CSL,
and also with Octapharma and with NuFACTOR home
infusion company. And then I have a financial
interest in Corinthian Reference Lab, which
provides skin biopsy testing.
We don't have great case series for small fiber neuropathies, in part because it depends on

1 how you define it. So is it abnormal skin
2 biopsies? Is it clinical? Is it QSTs? This is a
3 paper from a few years ago that looked at
4 mixed-fiber neuropathies both in South America,
5 which is the column on the right, and North America
6 on the left, and really kind of highlights the
7 point that at least in North and South America
8 among mixed fiber neuropathy, about 20 percent are
9 probably immune-mediated. I think if you wanted to
10 throw a dart at a board and said what percentage of
1 small fiber patients are probably immune-mediated,
1220 percent would probably be a good starting point
because, again, we don't have great data.
The cryptogenic here is listed as only about a quarter of the cases in both groups, and then the hereditary varies probably depending on how you actually define inherited neuropathies, polymorphisms versus pathogenic mutations, but the
number I kind of wanted to highlight is the 20 percent number.

That really kind of brings us to a broader
question, which is what the hell is an

Page 96
1 immune-mediated neuropathy? And this is where we
2 have a problem from square one. So I was going to
3 actually just use this case to demonstrate that we
4 don't even know what a neuropathy is or what an
5 etiology of a neuropathy is.
6 There's a 62-year-old female, 25-year
7 history of diabetes, 3-year history of neuropathic
8 symptoms. So is that diabetic neuropathy?
9 Probably. Well, what if they had gotten
10 chemotherapy five years ago because she had breast
11 cancer? What if her family history's got 3 first-
12 degree relatives? Is that inherited or is that
13 diabetic?
14 What if she took Levaquin 10 days before the
15 symptoms began? Is that a toxic neuropathy or a
16 diabetic neuropathy? Or are a lot of our
7 neuropathies actually caused by multiple causes,
18 which is what actually I would believe, and that we
19 don't really know the etiology of any of these
20 neuropathies? And this is as good as it gets,
21 right? Twenty-five-year history of diabetes,
22 that's as good as we can do. Now we're going to
try to talk about immune neuropathies, and we're not going to do as well.
How do we define a neuropathy as potentially
immune mediated? These are my thoughts, and I'm
sure we could probably add to it. The first is a
clinical presentation. So that would be the
pornography analogy, right? You know it when you
see it.
(Laughter.)
DR. LEVINE: That's fair. I mean, we're clinicians. That's what we're supposed to do.
What about acute onset? So somebody who's fine and
2 days later, they've got diffused neuropathic pain
everywhere, that seems to suggest that, but why
couldn't that be toxic? We don't know that either.
When it comes to the mixed fiber
neuropathies, we've relied a lot on
electrophysiology, and we'll talk about that a
little bit. That can be helpful. It can also be
very misleading. And then in the mixed fiber
neuropathies, we used to rely on pathology. So
some of the earliest descriptions of CIDP from

Page 98
Peter Dyck's group was based on actually doing
vesicular nerve biopsies and seeing the
inflammation in the nerve.
Again, in some of the neuropathies, you have
to look at changes in the CSF, C-elevated protein,
and those kinds of abnormalities. More and more,
we'd like to rely on the presence of neural
autoantibodies, but we don't know the sensitivity
or the specificity of those antibodies.
What about associated autoimmune diseases?
We'll talk a bit about that. If a person's got
Sjogren's, does that mean their neuropathy is from
Sjogren's or is it an idiopathic neuropathy and they just happen to have Sjogren's?

The last one is the really challenging one.
What about response to therapy? Can you define a
neuropathy as immune mediated because they get
better with IVIG or prednisone? Well, maybe, but
what about the placebo effect? And I'll kind of
show you a bit of that as well.
This is a paper, actually after a lot of attempts, I just got published. And l'll throw it

1 out there and you guys can attack it during the
2 open session if we want. But my first point is
3 that I don't think we can call this small fiber
4 neuropathy anymore. We heard that a little bit
5 this morning. I like the idea of small fiber
6 predominant neuropathy because all neuropathies
7 that cause pain, the pain's mediated by the small
8 fibers; we know that, or pure small fiber
9 neuropathy.
10 But even within that, if you see enough of 11 these patients, they look very different. So l've tried to propose that we break it out into four different groups. One is the small fiber sodium channel patients, so they have clear genetic defects in their sodium channels. They look very
16 different than our other patients. You can
7 identify them. They often have the
18 erythromelalgia. Then you've got the small fiber
19 mediated painful neuropathy patients. That's most
20 of the patients we're sort of talking about. But
21 that now really overlaps -- and l'll show you some
22 data -- in this kind of more widespread pain

Page 100
1 disorder, so fibromyalgia for example. We know a
2 significant percentage of those patients have small
fiber dysfunction.
$4 \quad$ Glenn Lopate's group at Wash U presented
5 patients that only have muscle cramps and no
6 neuropathic symptoms, that have small fiber
7 neuropathy. So all of those sort of lump together
8 and I think need to be split out because I think
9 their clinical differences are probably telling us
10 something. And then you have autonomic dysfunction
11 on the other end. And then the problem is these
12 overlap in a variety of different ways with
13 different Venn diagrams. So obviously, some
14 patients with painful neuropathy also have the
15 autonomic symptoms and vice versa, but not always,
16 and that may be telling us something different
7 about their pathology.
18 Let's start a little bit with the mixed
19 fiber neuropathies. The classic immune neuropathy
20 is Guillaine-Barre. We all accept this is an
immune-mediated neuropathy. But the patient comes
22 in a day after their symptoms begin. Their nerve

Page 103
conduction studies may be normal. Their CSF may be
normal. If a patient was exposed to campylobacter,
it may be axonal, so demyelinating and autoimmune
are not synonymous. That's not the same process.
Most of the patients with Guillaine-Barre
don't have identifiable autoantibodies. They don't
have to have a preceding illness. So we make the
diagnosis of Guillaine-Barre clinically. Again, we
know it when we see it, and we treat it. Everybody accepts that fact. Right? They don't say, oh no, your nerve conduction studies are normal on day 2 ;
you can't give that person IVIG. Clinically we know it because we see it.

So it makes it very difficult now when we start to go to other syndromes when we don't have quite as good a clinical course. So let's talk
about small fiber neuropathies. Again, these are small series, I understand, but we'll talk about really good data to not so good data.

So your classic Guillaine-Barre patient shows up. You know it when you see it. Here are two patients that were presented this year.

## Page 102

Patients had acute onset preceded by an infection,
diffused hyperreflexia, albuminocytologic
association. They got IVIG. One got steroids.
But most important, in the study, they took their
sera, transferred it to a mouse model, and there
were transient alterations in the thermal pain response.

It's very difficult to argue that this is
not an immune-mediated small fiber neuropathy.
Now, we're not going to have most of this data for
most of our patients, but this argues it does
exist. We just may not have all the things at our
disposal, particularly the mouse model, every time
that we see a patient.
So how about this case? This was a case that was published two years ago of a girl who got
a vaccine, and beginning 9 days after the vaccine developed a diffused painful neuropathy. So skin biopsy was abnormal, everything else was normal, and they called this, again, a post-vaccination acute small fiber neuropathy. Probably, not as good a case as the one I just showed you before,

1 but you go, "Yeah. I kind of buy it."
2 Then what about this series from 10 years ago where they took patients that had acute onset

4 small fiber neuropathies? They had abnormal QSTs
5 in skin biopsies, and they gave them steroids, and
6 they got better, but it was all a length-dependent
7 neuropathy. Are you convinced that that's immune
8 mediated? Probably a little less so than the first
9 two I showed you, but it could be, but we just
0 don't know.
11 So when it comes to mixed fiber
12 neuropathies, again, we've got the
3 electrophysiology. We don't have the
14 electrophysiology for small fiber studies. But the
5 reason I've put this up here is in that first
6 slide, you've got a long latency -- I think it's a
7 median -- and the connection velocity is 31 . Here 8 you've got really impressive temporal dispersion.
19 Here you've got conduction block.
So that's three different examples of
21 different types of demyelination. We tend to lump
22 them all together and say, yes, that's evidence of

1 a demyelinating neuropathy. This is most likely
2 acquired when you see these types of changes, and
3 therefore, acquired demyelinating neuropathy means
4 that this is an immune-mediated process.
$5 \quad$ The problem is we have -- actually I should
6 say 20 . We have 20 different sets of criteria for
7 figuring out how much conduction block temporal
8 dispersion with our prolongation latencies and
9 velocities you need, and none of them are really
10 all that good. Again, they help us, but they're
11 not really that good.
12 Then even more importantly are a growing
13 number of case reports of inherited neuropathies
14 where you can have proximal weakness, conduction
15 blocks, and patchy load conduction velocities; not
16 the findings that you would expect to see in the
17 inherited neuropathies, but they can occur. So
18 even our nerve conduction studies, which we think
19 of as the most helpful for small fiber
20 neuropathies, turned out not to be as helpful as
21 we'd like. And again, we don't really have any of
22 those tests for small fiber neuropathies, and
probably more importantly, we don't have any tests
for sodium channel dysfunction or nodal dysfunction.

So the contactin antibodies, the neurofascin
antibodies, we now know are affecting the nodes but
not necessarily the myelin diffusely. And all the
sodium channel defects that we see, we don't have a
good way to test that clinically to know whether
that's relevant as well.
So how about biopsies? We like skin
biopsies. I've got a lot of the skin biopsies, so
we like that. Skin biopsies traditionally have
been okay for allowing us to look for acquired neuropathies.

Here are a couple of different studies that
looked at doing patients that they were really sure had CIDP, and about 1 in 5 are normal. So it's about 80 percent, which is about as good as any of the different sets of nerve conduction study criteria that we have. But very often you also just see external degeneration, so that now means 2 in 5 are going to be completely unhelpful in

## Page 106

distinguishing immune neuropathy, even in cases,
again, with our gold standard mixed fiber
neuropathy of CIDP.
Then what about all the immune neuropathies
that are demyelinating, all the vasculitides that
we see? So again, looking for demyelination as the
gold standard of some type of acquired
demyelinating or autoimmune disorder may miss a lot
of potential patients.
But when it comes to pathology in skin
biopsies, this paper from I guess six years ago now
began all of us thinking in a slightly different
way. I like it. I don't think it's perfect. But
what they basically did here was to say we're going
to look at patients that have a length-dependent
small fiber neuropathy by pathology, so worse
distally, and compare those to patients that have a
non-length-dependent small fiber neuropathy. And
what they found was that if you have a
non-length-dependent small fiber neuropathy, you're
more likely to be female and you're more likely to
have an autoimmune disorder.

1 This began a lot of us thinking, well, we
2 probably need to pay attention to this. Again,
3 it's not perfect, but I do think it argues a little
4 more strongly. But again, if you look at this, the
5 immune-mediated neuropathies were only in
614 percent of the non-length dependent. So think
7 about that 15 to 20 percent number. That's
8 probably about as good as we're going to do in
9 terms of the overall neuropathies that we're
10 talking about.
11 This is two other studies now trying to look
12 at autoantibodies. Antoine had a very nice paper
3 where they took patients that had a sensory
14 neuronopathy clinically, so a non-length-dependent
15 clinical syndrome, and they found elevated levels
16 of antibodies against fibroblast growth factor
7 receptor 3 in 15 percent of their patients compared
18 to 0.5 percent of the controls.
19 Pestronk had another paper that he looked at
20 TS-HDS antibodies, and he found that the majority
21 of the patients who had positive antibodies to
22 TS-HDS presented with upper-limb symptoms before

Page 108

1 lower-limb symptoms, again, both arguing for a
2 non-length-dependent clinical and pathologic
3 syndrome in patients that have these autoimmune
4 diseases.
5 This was another series from last year,
6 again, small numbers of patients, but they found
7 patients that had -- children, actually, that had
8 small fiber neuropathy, and they found elevated
9 levels of $\operatorname{IgM}$ antibodies against TS-HDS I think in
104 of the 5 patients.
11 What about looking at CSF? Well, CSF, 12 unfortunately, even in CIDP is not great, so we use
13 it if we're kind of confused. But some people have
14 tried to use it to distinguish, say, a diabetic
15 neuropathy from an immune neuropathy. And the
16 problem is that doesn't really work. We've got
17 cases where diabetic neuropathy can have CSF
18 proteins as high as 400. And probably more
19 mistakes are made because the lab values cut off 45
20 as being high. You get some 60 year old with
21 diabetes, they get a spinal tap to protein 60, and
22 then they're labeled as CIDP.
very helpful. There was one report that I liked
actually that looked at $\lg$ g synthesis rate,
actually, as being one of the most helpful if
you're trying to follow an immune-mediated process.
So at least in CIDP, as the IgG synthesis rate
comes down, their disease seems to be less active.
So it's one thing that you could look for if you
wanted to.

This was a relatively large study looking at Sjogren's patients. What they found first off was that about 60 percent of patients with Sjogren's syndrome had peripheral neuropathy. They then looked in the spinal fluid of those patients. They found that 9 percent had a few cells, but nothing really too impressive. About 20 percent had oglioclonal bands in the patients that had peripheral neuropathy. So again, the sensitivity here is just very, very low, and probably makes it not all that meaningful to look for if you want to.

1 This was another paper, actually, by Lopate at Wash $U$ again, where they found 45 percent of patients with Sjogren's syndrome had small fiber neuropathy, pure small fiber neuropathy.

Other autoimmune diseases, so sarcoid,
there's a company now developing a drug that targets the innate repair receptor. They've published some early phase 2 results specifically in sarcoid-mediated small fiber neuropathy, but it seems to be relatively common.

So they looked at sarcoid-related small fiber neuropathy in 143 cases. Pain was the most common symptom, dysautonomia in almost half of the patients. Then they treated patients with IVIG.
They saw 47 out of 62 patients improve with IVIG; 8
of 12 patients that got anti-TNF therapies
improved; and 10 of 14 patients that got both therapies improved.

So they argue that the small fiber
neuropathy in patients with sarcoid is likely to be
immune mediated, again, largely on the basis of the fact that the patients' symptoms improved with

1 therapy.
2 For the most controversial subjects, Ann
3 Louise published the first of these papers. They
4 compared patients with fibromyalgia, the control
5 subjects, and found 41 percent of patients with
6 fibro had small fiber neuropathy compared to
73 percent of the patients in the control group.
8 Then importantly, a large percentage of the
9 patients that had fibromyalgia had some form of 10 immune dysregulation.
11 We published a few years later with Ohio
12 State. We found 50 percent of our fibro
13 patients -- we did not have a control group, so we
14 biopsied just fibro patients. But we found very
15 similar numbers to what Anne Louise found, which
16 was at 50 percent, and then we found 20 percent of
17 those patients had some evidence for disordered
18 immunity. The important little phrase there, which
19 I added, is that these are patients that were seen
20 by rheumatologists, so they had not done a lot of
21 the tests that you would normally think to do as a
22 neurologist. So these patients had not been

1 diagnosed with these immune disorders before.
2 Again, also from Anne Louise was this one 3 that looked at small fiber neuropathy in children
4 with widespread pain syndromes, they identified
5 definite or probably small fiber neuropathy in
6 about 70 percent of these patients. That third
7 bullet point I think was really one of the most
8 important points of the paper that talked about a
9 lot of the dysautonomia, the chronic fatigue,
10 chronic headache that seemed to follow these
11 patients and I think really are part of the same
12 syndrome. In their paper, they found problems in
13 immune system diseases in almost 90 percent of the
14 patients, and 12 of the 15 patients that were
15 treated with either steroids or IVIG subjectively
16 got better.
17 Most of you are probably familiar with this
18 data. I put this up here to highlight two
19 important points. Our best example of a chronic
20 autoimmune neuropathy is CIDP. Most of us feel
21 IVIG works in CIDP, and the response rate is less 22 than 50 percent in our best controlled trial ever.

So if we're going to rely on response to therapy,
and we know our best response is 47 percent, again,
we're going to have a really hard time trying to do
this, particularly if our outcome measures are subjective.

The other important point is even in this disease in which these patients absolutely, as best any clinician in an academic center could do, had
CIDP and had weakness, 22 percent got better with placebo. So we can't forget that basically half as many people improved with placebo as they did with active therapy.

So what about IVIG in small fiber
neuropathies? Again, this is just a bunch of random case series that l've tried to highlight here. This was another case series that looked at IVIG in sarcoid-mediated small fiber neuropathy, only 3 patients, but the patients symptomatically improved, again, arguing that sarcoid in small fiber neuropathy may have a shared immunopathology.

This was a case series of patients with celiac-mediated small fiber neuropathy. They also

Page 114
had cerebellar ataxia. These patients got better
with IVIG, and then in 2 of the patients, the IVIG,
and they got worse again; again, trying to argue,
again, the limitations being we're looking at
response to therapy as an outcome measure. These
are patients that have the ganglionic antibody and
small fiber neuropathy. So 6 patients that were
treated here, I think they either got IVIG or
steroids -- IVIG or plasmapheresis, and the
patients seemed to benefit from therapy; again, small numbers.

I'll highlight some of my own work. This is a poster that we presented, Dave and I, a few years back. These looked at patients, again, that had some evidence of immune dysregulation that's pathologically proven small fiber neuropathy. They were given IVIG for 6 months. And the point I kind of want to make is that we did pre- and post-nerve biopsies, or skin biopsies. And this really provides, I think, some way to start to think about objective measures.

If you look at this patient, in a

1 pre-biopsy, they had zero nerves at their calf, and
2 then after the biopsy, they had 6 nerve per
3 millimeter at their calf. There have been a few
4 papers in the last couple of years that have looked
5 at the natural history and the variability. That
6 seems to be outside the spectrum of the normal
7 variability.
8 This was a poster we presented from last
9 year. Again, these were 3 patients that had small
10 fiber neuropathy and those 2 autoantibodies. So
1 TS-HDS and FGF are 3. They got IVIG for 6 months.
12 And again, just to highlight the best ones, the
13 patients that had 1.6 nerves per millimeter at
14 their calf after 6 months was up to 8.4 against 3
5 patients, but they had significant pain reduction.
16 So the question is, do these autoantibodies serve
7 as a marker in some subsets of patients with small
18 fiber neuropathy for an immune-mediated process?
19 This was just published again by Anne
20 Louise's group, which was a great paper. They took
21 a large number of patients that had small fiber
22 neuropathy. What I really like about this

Page 116
1 paper -- and it's what everyone is going to not
2 like about this paper. But what I really like
3 about this paper is it goes back to my pornography
4 analogy again. There is not one specific criteria
5 that allows us to put people into a group and say,
6 yes, this is autoimmune.
7 They found a quarter of the patients have
8 systemic autoimmune disorders, some had
9 organ-specific autoimmune illnesses, and some just
10 had abnormal blood test markers as a sign of
11 autoimmune or immune dysregulation. The idea is
12 could we start to build a composite picture for
13 what the people look like as opposed to just one
14 test? Because we're very unlikely to get there 15 with just one existing test.
16 So they looked at autonomic testing. They
17 looked at pain scores. Both improved
18 significantly. So 74 percent of the patients felt
19 they were improved; 77 percent were rated as IVIG
20 responders by the treating physicians; and
2116 percent had sustained remission once the IVIG
22 was withdrawn. Again, the point being there is
clearly a group of patients that have an
immune-mediated small fiber neuropathy, and this is
I think getting much closer to how we have to think
about identifying those patients.
This is my thought, which is, if we break
patients into 5 different groups or 5 different
categories for each patient, we can start to think
a little bit more clearly about what makes us tick,
what makes us think this patients has an
immune-mediated process?
11 The first will be clinical. Again, you get
12 a vaccine, and 2 days later you're sick; yeah, we
think that's the vaccine. You get an illness, and
14 a week later you develop a horrible neuropathy.
15 That tells us that there's an acute process. We
16 like that. It sort of fits with what we know about
7 other types of neuropathies.
Clinically, are they non-length dependent?
So we think very differently about a person with
numb toes and feet than a patient whose face is
burning. That's telling us something is very
different about their neuropathy. And I would also

Page 118
add in there autonomic. So if there's a very
pronounced autonomic component, it's telling us
this is more of a widespread process.
Pathology, I think we need to think about
length-dependent versus non-length-dependent
pathology separately the way we think about
length-dependent and non-length-dependent clinical
symptoms. I can tell you, in our series, there's
not necessarily a strong correlation. I think
10 those are two very different variables.
11
12 smarter? Can we look for some of these
13 inflammatory markers in the skin? We've been doing
14 this in our lab. I can't say we've found much
15 exciting yet, but we're trying to see can you look
16 at complement deposition and can you look at some
7 of the inflammatory cells that might be in the skin
as a way to really kind of look at this?
The lab testing, obviously that's what we
like. Again, maybe some growing evidence to TS-HDS
and FGFR-3 are helpful. Other neural antibodies
2 are important; non-specific antibodies, to me

1 meaning SSA, SSB, and ANA, and those antibodies.
2 If you want CSF, what if they have monoclonal
3 gammopathies? All of those things are really
4 pushing us to think this is immune mediated.
5 Obviously, we talked about the associated
6 disorders.
7 Then the last category is really the tough
8 one, which is do you include that as an outcome
9 measure to think about what we're doing? Then if
10 you were going to build this type of a table, would
11 you include negative predictive factors? So what
2 if you had a person who had Sjogren's and had
3 diabetes? Is that going to make you think more or
4 less likely that it's immune mediated? I think we 5 have to think about those as well.
16 This is what I would do. My thinking is
17 that we take those variables, and I'll show you
18 three cases, and I think it will start to make
9 sense. If you took this patient that had an acute
20 onset small fiber mediated pain and autonomic
21 dysfunction; non-length-dependent pathology,
22 elevated levels of FGFR-3 antibodies; positive SSA

1 and SSB; inflammatory changes in their CSF; and a
2 history of Sjogren's, you have a very hard time
3 arguing that that is not immune mediated.
4 So that's sort of the bullseye. And if you
5 add up all the points from my previous table, that
6 gives you 7 points, and says, yep, that's immune
7 mediated. So that one is pretty easy.
8 What about a patient with a 3-year history
9 of distal burning, length-dependent pathology, a
10 history of diabetes, and nothing else? Well,
11 that's zero points. In fact, you could make it
12 negative 1 point if you want to, if you take my
13 negative scale. So they're not even on the target.
14 What about the patient that's got a 6-month 15 of history of burning that started in the hands,
16 gradually spread to their chest and back, and
17 they've got no autonomic features? Their pathology
18 is length dependent, but they've got antibodies to
19 TS-HDS? Well, it's getting hard, so l'd give that
20 a couple of points. So on the board, but it's not
really the bullseye that you'd want. So I think
2 depending on how sensitive and specific we want to
be, we can start to take these variables and really
try to put together a picture that will allow us to identify these patients better.

So the point is, again, all these are
different. All these patients I think are truly
different. The patient that's got just pain is
different than the patient that's got pain and
autonomic features, so we have to think about them
a little bit differently. Then each of those
really has a very different pre-test suspicion.
When you go into treatment, we all come to our own
conclusion in our head, is this patient likely to
get better or not? If we're going to start to do
trials in immune-mediated neuropathies, we would
want to enrich that as much as we possibly can,
obviously without hurting the enrollment.
I think that's it.
DR. FREEMAN: Thanks for a terrific talk and
attempting to structure out thinking on small fiber
neuropathy in a provocative way.
Before we have questions, what l'd like to request is if the members of the audience can

## Page 122

attempt mentally to dissociated immune-mediated
small fiber neuropathy from pornography --
(Laughter.)
DR. FREEMAN: -- if it's at all possible.
The question I had is, that paper by Liu et
al., they had all these blood biomarkers, but did
they actually look at the skin biopsy, and did they
look at specific biomarkers of inflammation that
were occurring in the skin? And do they correlate
that with the intraepidermal nerve fiber changes or
other changes in the skin fibers?
DR. LEVINE: You mean the one from like 5 or
6 years ago?
DR. FREEMAN: Yes.
DR. LEVINE: No, they didn't.
DR. FREEMAN: Well, actually the 2018 paper,
Liu at al., the one that's just been
DR. LEVINE: Well, Anne Louise could
probably -- I don't think so. So, yeah. Again,
the difficulty -- the challenge is, the more you
split these people into smaller groups, the smaller
your numbers become. I recognize that that's sort

1 of a dilemma. You'd like to have as homogeneous a
2 population as possible, but then you end up with a
3 very small population.
4 So really, that paper, the idea was that
5 this was suspected autoimmunity, and then suspicion
6 that there was autoimmunity came from the variety
7 of factors that they listed. But I don't think
8 they broke it out by looking at biomarkers in the
9 skin.
10 DR. FREEMAN: Nurcan -- before she asks her 11 question, I just want to emphasize, left out of your reference list was the terrific paper that Nurcan's group did on small fiber neuropathy in the setting of fibromyalgia. I don't know if your question is going to be related to that, but your interpretation was a little different to what we heard this morning. So if you could include that in your question as well.

DR. UCEYLER: Well, thank you very much.
Actually, my question was about another paper that we published on immune mediators or biomarkers in the skin of patients with small fiber neuropathy.

1 That was Neurology 2010, where we looked at
2 length-dependent and non-length-dependent patients
3 with idiopathic small fiber neuropathy. And what
4 we found is that we counted the T cells and
5 macrophages in the dermis and saw no differences.
6 And then we measured pro- and anti-inflammatory
cytokines in the same skin biopsies of these
8 patients using quantitative real-time PCR, and we
9 saw an up regulation of asiatic proinflammatory
10 cytokines in the length-dependent group.
That was quite interesting, and in our
hands, when we've seen our patients do the skin
biopsy, we do not treat them with immunosuppressive
drugs, only if we would see an increase, some kind of evidence in this prospective.

Another aspect now going to this 2013 paper about fibromyalgia and small fiber pathology, we called it, the command I would have here is -- also looking at your slides -- we're talking about small fiber neuropathy for all of these conditions, what is now fibromyalgia, and sarcoid, and celiac disease, and diabetes, and whatever.

```
distinction because the clinical presentation is
obviously very different, so the fibromyalgia
patient does not come with burning feet and burning
mouth, but has an aching muscle pain. That's the
reason why we called it small fiber pathology in
our title in this first description. So this is
maybe something to be discussed later also.
    DR. LEVINE: The second point, your last
    point, I think is a really important point. I
    agree. That's why I'm kind of trying to propose
    that we come up with a different terminology for it
    because the patient that has the fibro syndrome,
    that has abnormal epidermal density, does look very
    different than the patients that has burning toes
    or the patient that has burning mouth. And I think
    we have to think about them.
    DR. UCEYLER: And also doesn't have
    any -- at least in our hands, we also looked at the
    skin and looked for asiatic markers in the skin,
    again, looking for pro- and anti-inflammatory
    cytokines, nerve growth factors, and so on, and we
```

    Page 126
    didn't see this pattern that we found in the small
    fiber group. So I think there is really a
    distinction from the pathophysiology also.
    DR. FREEMAN: One of the issues that I think
    we should table for the moment, but will definitely
    come up -- that's why I wanted Nurcan to speak
    about their interpretation of their data, is the
    specificity of skin biopsy for small fiber
    neuropathy versus their interpretation. And that
    is small fiber pathology associated with
    fibromyalgia, which was their interpretation
    subsequently in a letter to the editor, I think,
    following a response to their paper.
    I think it was Giuseppe, then David, then
    Ahmet.
    DR. LAURIA: Thank you because it's a very
    sensitive area. I'm not arguing that the immune
    system is involved or may be involved. We've
    treated some kids, for instance, with very severe
    and acute, so it might happen.
    May I suggest -- following your idea to
    2 separate the neuropathy associated with a clear
    1 system disorder, just final, you have Sjogren
2 disorder and you may have a neuropathy. That's it.
3 The other point in which I would like to see
4 whether there is an agreement is the concept that
5 one data does not make a diagnosis. So if I have
6 chest pain, probably I could have a myocardial
7 infarction and a number of other things.
8 If we agree on the principle, the fact is
9 that the gammopathy, for instance, that you have
10 listed is very common, and with increased age of
11 the population, it becomes even more common. So
12 the relationship between the evidence that one
13 person has a neuropathy and one person has, at the
14 same time, even one antibody, the antinuclear
15 antibodies, it is very important because the
16 relevance that it has in clinical practice is huge.
17 There are patients requiring IVIG on the basis,
18 from my perspective, of very little.
19 DR. LEVINE: I agree completely. Again,
20 that table I listed, in an ideal world, each of
21 those would be a different point. The acute onset
22 might be 3 points and ANA might be 1 point because
Page 128
1 we know the specificity of an ANA is very, very
2 low. The problem is how do we get there and it has
3 to be guesses to begin with. I think you're
4 absolutely right, which is I would think about a
5 known systemic autoimmune disease and a neuropathy
6 differently than a patient who has a neuropathy and
7 you find a blood test. Those are two very
8 different things. Yeah, I agree.
9 DR. FREEMAN: David Herrmann, Ahmet, and 10 Anne Louise.
11 DR. HERRMANN: Todd, on this question, as we
12 think about diagnostic criteria for immune-mediated
13 small fiber neuropathy and giving people points for
14 different elements, to the point of treatment
15 response, one of the concerns I have is I think we
16 all need to be fairly stringent about what
17 treatment response is.
18 So IVIG's going to modify cytokines, and
19 what I don't know is when a patient has response to
20 IVIG with a small fiber presentation, and the
21 endpoint is pain improved or symptoms got better, I
22 don't know whether that's a symptomatic effect
because I suspect that IVIG modulates pain pathways
substantially as steroids would do. So I would
argue that we probably need some objective
evidence. When you give IVIG or plasma exchange to
someone with CIDP, their strength gets better.
So if we're going to include response to
treatment, I think we have to have some criteria
for what a response to treatment looks like, and I
don't think it can only be improvement in pain.
DR. LEVINE: I completely agree. Number
one, even though they were small numbers, I
followed up with a biopsy, and I probably now have
20 or 30. You can do it in 3 or 6 months, and you
see a change.
Chris and I are designing a trial with
Grifols, which will include outcomes of a biopsy.
It's different than if you -- obviously, if you're
using a sodium channel blocking drug and you're
treating pain, then your outcome is pain. When we
start to think about these drugs, even more
cytotoxic drugs, you need something more than pain. I agree.

## Page 130

1 DR. FREEMAN: So Ahmet, Gordon, and then the panel. [Inaudible - off mic].

DR. HERRMANN: You've missed Anne Louise.
DR. FREEMAN: Anne Louise, Gordon, and then the panel.

DR. HOKE: I was going to also bring up the treatment issue because I think a large part of the
acute onset non-length-dependent neuropathies, I
would like the GBS equivalent. Those people
improve on their own. They have a monophasic illness. Those people probably don't need treatment, but the ones who have a more slower onset, perhaps progressive type of neuropathy, deserve extra attention in investigations. But probably the majority of the ones that I see in my clinic, by the time they come to see me, 8 ,
10 months later, they're already starting to see improvement in their pain levels. I biopsy these people a year or two years later. They all improve their epidermal nerve fiber density without any treatment.

DR. LEVINE: Osvaldo Nascimento has a series

1 in Brazil where they were post-Zika, very severe
2 painful syndrome, and he doesn't treat them, and
they get better.
4 DR. FREEMAN: Anne Louise Oaklander?
5 DR. OAKLANDER: So I hold open our 2013
[inaudible - off mic] a week. We're actually
pretty balanced, and we try to look at all
8 available tools. I just want to mention the
9 results of the other data we collected
0 [inaudible - off mic]. We looked at symptoms. We
looked at signs. We looked at pathology. We
2 looked at physiology. I don't know what else to look for.

DR. LEVINE: And you had a control group, which I will say our paper didn't. But that was in
the 3 versus 40 percent.
DR. OAKLANDER: We used the Michigan neuropathy screening instrument as a way to measure
symptoms, and [inaudible - off mic] was 1.3, and
the full group, 5.8. Fibromyalgia patients were
[inaudible - off mic]. We used physiology. We
used autonomic testing. That did not pick up any

Page 132
1 major difference, and the skin biopsy. So again,
2 we are not proposing that skin biopsy -- in other
3 words, it was more than just pathology in the
4 study. It was symptoms and [inaudible].
5 DR. LEVINE: Back to your point, we should
really start to think about these terms that we're
throwing around today because as Chris pointed out,
Parkinson's patients have small fiber pathology.
9 We're not saying they have small fiber neuropathy,
0 to your point. So that's exactly right. I think
that's a very important distinction.
DR. OAKLANDER: Neuropathy has the word
13 "pathology" in it, so I think we have to think
4 about the words we use. For instance, I tend to
15 use the word "small fiber polyneuropathy" because
16 there are other types of neuropathy that are not
7 polyneuropathy. So even at the most basic level,
18 we're making assumptions that we may or may not
19 want to make, but we should think about it.
DR. FREEMAN: Gordon, last question for this
talk, and then that will be it.
DR. SMITH: Yes. I just have a couple of

```
points. Just to go back to my first point, I think
there's a real risk in conflating pain with small
fiber neuropathy or pain with small fiber
pathology. There are large fiber painful
conditions, and pain can be generated out of large
fiber entry.So I think that's really important in
our concept of small fiber neuropathy. We see this
from a clinical perspective. As you pointed out,
patients with GBS can have pain. CIDP with
contactin antibodies have very severe neuropathic
pain with demyleinating features on nerve
conductions studies.
    I also want to go to the you know when you
    see it sort of thing. I'm not going to say what
    "it" is.
    (Laughter.)
    DR. SMITH: AI Gore has defined that for us.
    (Laughter.)
    DR. SMITH: In particular the vaccine,
    because I think the association between something
    that happens acutely with something else, one has
    to be very cautious. And I'm having flashbacks of
points. Just to go back to my first point, I think
there's a real risk in conflating pain with small
fiber neuropathy or pain with small fiber
pathology. There are large fiber painful
conditions, and pain can be generated out of large
fiber entry. So I think that's really important in
our concept of small fiber neuropathy. We see this
from a clinical perspective. As you pointed out,
patients with GBS can have pain. CIDP with contactin antibodies have very severe neuropathic pain with demyleinating features on nerve conductions studies.
I also want to go to the you know when you
see it sort of thing. I'm not going to say what "it" is.
(Laughter.)
DR. SMITH: AI Gore has defined that for us.
(Laughter.)
DR. SMITH: In particular the vaccine,
because I think the association between something
that happens acutely with something else, one has
to be very cautious. And I'm having flashbacks of
```

    Page 134
    the whole Gardasil vaccine ALS thing, for those of
    you in ALS and kind of the whole hubbub about that
    a number of years ago. And now I think most people
    accept that there isn't a risk relationship.
    What I get concerned about I know it when I
    see it is we're layering on our own preconceived
    notions and looking for justification on the data
    we have. I think your construct is great, but we
    need to be really cautious, because I bet everyone
    in this room got a flu vaccine this year, and
    there's probably 15 or 12 percent of us who have
    low titer-positive ANA in the room. So in that
    target, right of the bat, if we had symptoms
    somewhere near our vaccine, we're going to be in
    one of these questionable categories. I think it's
    complicated.
        Q \& A and Panel Discussion
            DR. FREEMAN: On that note, Chris Gibbons,
    as people begin to take their seats.
    DR. GIBBONS: This is really meant for the
    whole group. But one of the things, in kind of
    listening to the talks that we've heard about,
    Page 134
1 the whole Gardasil vaccine ALS thing, for those of
you in ALS and kind of the whole hubbub about that
a number of years ago. And now I think most people
accept that there isn't a risk relationship.
What I get concerned about I know it when I
see it is we're layering on our own preconceived
notions and looking for justification on the data
we have. I think your construct is great, but we
need to be really cautious, because I bet everyone
in this room got a flu vaccine this year, and
there's probably 15 or 12 percent of us who have
low titer-positive ANA in the room. So in that
target, right of the bat, if we had symptoms
somewhere near our vaccine, we're going to be in
one of these questionable categories. I think it's
complicated.
Q \& A and Panel Discussion
DR. FREEMAN: On that note, Chris Gibbons, as people begin to take their seats.

DR. GIBBONS: This is really meant for the whole group. But one of the things, in kind of listening to the talks that we've heard about,

1 depending on what we're looking for as
2 outcomes -- one of the questions that arise
3 whenever we think of clinical trials or looking
4 forward, is obviously response to treatment, as we
5 just heard, particularly in the immune-mediated
6 neuropathies, what gets better? Has pathology
7 changed really significantly?
8 The reason I get to this question is because
9 none of us have really looked at -- well, actually
10 that's not true. Many of us have looked in detail
11 of what the dynamic change is, even in the
2 pathology. If we go back to Michael Polydefkis'
3 original paper in the capsaicin model and the
4 dynamic changes that occurred, there are dynamic
5 changes that can occur even with pathology very
quickly in short amounts of time. The Utah group
has really looked at dynamic changes post-exercise
8 in certain glucose dysmetabolism populations and
19 seen improvement.
20 So we know there can be an effect of
21 something on the small fibers, and they dynamically
22 change. So I think we also need to be cautious

Page 136

1 about looking at our endpoints of improvement. As
2 we just heard about the Zika virus and recovery,
3 anything can change to some degree. And I wonder
4 in some cases that looked at deeply depressed
5 patients who are nearly bed bound, not really
6 active, what is the nerve density? I would argue
7 it's likely to be very low. And if they are
8 treated with an SNRI, they would get better. Is
9 that a small fiber neuropathy because they have the
10 low density or is it because they've now moved,
11 they've gotten better, they've gotten out of bed,
12 they've gotten active? Where is the role for this?
13 I'm just throwing this out there for
14 discussion.
15 DR. FREEMAN: Karin, you look like you want
16 to respond.
DR. FABER: Well, of course this is
18 something that has not one clear answer to. But I
19 think if we look at other neuropathies, for
20 example, the inflammatory neuropathies, we know
that the voice of the patient really is important,
22 and that the patient really is capable of telling

Page 139
us how he or she is doing. And we know that from
the work that Ingemar Merkies has done on the
[indiscernible], for example, and we also know that
for other diseases, it works the same.
So I would be in favor of also asking the
patient how he or she is doing, and that also means
including pain as an endpoint. It doesn't mean
that you have to say that pain is the only
endpoint, that's something else, but I think that
for the patient, the main complaint and the main problem of small fiber neuropathy is the pain. So
it should at least work on the pain, whatever you do.

DR. SINGLETON: I was going to say that for me, those discussions make me think that we should
cast a wide net for what we mean by small fiber neuropathy and that when we do clinical trials, it's crucial to have some sort of objective measure of nerve function. Whether that's pathological or quantitative sensory testing, I think we'll discuss that further, but that's the reason to have that, that it helps to defend against criticism that this

Page 138
is just a non-specific improvement in patients'
perception. That's crucial to the FDA, but it's
not the only aspect that should interest us or
those who organize pharmaceutical trials.
DR. FREEMAN: Anne Louise?
DR. OAKLANDER: That's why we chose two primary outcomes in our IVIG study, one being improvement in pain because it's obviously central
and not everybody has [inaudible - off mic]. But
we also used an objective biomarker, so I don't
think there's going to be any one metric. All of
these clinical trials, we have to very strongly
[inaudible - mic fades] primary outcomes.
DR. BELL: Sorry. I just want to make one comment on that. I agree under the presumption
that you have what you assume is a
disease-modifying therapy, which for a lot of us in
drug development when we're targeting pain -- we've
had this discussion with Roy a number of
times -- the value of having some of these more
objective markers as primary endpoints is
questioned because our primary outcome, for

1 example, is pain because we are in the business of
2 developing pain drugs that may or may not alter the
3 actual course of the disease.
4 So my question would be, how do you
5 objectively -- I mean, how do you do that when you
6 have a therapy that you don't suspect modifies your
7 intraepidermal nerve fiber density? It doesn't
8 change your QST phenotyping. All you're left with
9 is how are you feeling and how is your pain.
10 DR. FREEMAN: I want to maybe, just by way
of clarification, the goal of the meeting was
purposefully vague, and we do think of small fiber neuropathy, as with every neuropathy, as having a
symptomatic component and also being the substrate for potential disease modification.

The way I'm presenting it now, it is as if these are two discrete approaches to a disease. I
think more and more we're beginning to
recognize -- and I think the basic science slide
that Karin showed us initially looking at the
potential multifactorial approach to the etiology
22 of a neuropathy suggests that there may be more of

1 an overlap than we think, and that perhaps by
2 disease modification, removing one factor of a
3 polyfactorial or multifactorial disease, you may
4 actually be modifying the actual history of the
5 disease.
6 So I think it's a really very important
7 point that you are making that there will be
8 strategies, target-directed therapies, that are
9 symptomatic, and they may or may not also be
10 disease modifying. But I think we need to
11 recognize that these are at two ends of the
12 spectrum, and that disease modification may in fact
3 on some level make symptoms worse in some cases.
1 Pain may get worse as you improve nerve function
15 and nerve structure. So it is more complicated
16 than perhaps meets the eye.
17 Rayaz?
18 DR. MALIK: I think it is important as a
19 group for us to be clear that disease modification,
20 we must have some improvement in function or
21 structure. And l've talked to some pharma that
22 there is danger almost of you wanting a quick

```
target. So pain, you can do an }8\mathrm{ to 12-week study,
and you can show a benefit, and go to the FDA and
get an approval, but it's not necessarily disease
modification. And as a group, we need to have
clarity on that. I think if you have a disease
modifier, you need to have I think an objective
measure. You can't have both.
    DR. LEVINE: I think, too, all these points
are kind of saying the same thing. But it comes
back a little bit when you're trying to think
about -- and we're going to talk later -- an
inclusion/exclusion criteria. Number one, it
depends on what kind of a drug you're doing. Is it
a symptomatic treatment? Is it a disease-modifying
treatment? Because that really reflects who you're
going to choose. When you talk about outcomes,
yes, I think you absolutely have to ask the
patient, and it has to be pain, and it has to be
function.
I mean, all of us see a broad range of small fiber patients, those with a little bit of numbness or tingling. And clinically, you would never want
```


## Page 142

to expose them to steroids or IVIG because they're
fine. And then we see some patients that are
horribly disabled that never get out of the bed,
and the risk-benefit completely shifts in terms of
how we think about how aggressive we want to be for those patients. So there we really want to improve function.

So you can improve pathology all you want,
and I'm an advocate for looking at the pathology,
but if you don't make people better, what have you done?

DR. FREEMAN: Let's go. I think Anne Louise was first, then Nurcan, and then Gordon.

DR. OAKLANDER: I think it depends on the level of maturity of the field, and I actually followed the Alzheimer's field fairly closely as a good example. They're going into immunotherapy, and we understand -- we don't know everything, but people would argue there that even in patients who are not symptomatic, if you have strong evidence of ongoing and progressive neuronal degeneration, that treating neuronal degeneration alone may be a valid

1 outcome even in the absence of major symptoms. And
2 I think that's because it's much better defined.
3 DR. LEVINE: But can I poll the room really
4 fast? By a show of hands, if you treat small fiber
5 neuropathy, do you think the majority of your
6 patients stay the same over time or get worse over
7 time? How many people think stay the same, the
8 majority? I mean, some obviously do whatever.
9 DR. OAKLANDER: Treat how?
10 DR. LEVINE: You're just managing them
11 clinically, so not treating with any
12 immunomodulatory therapies, just a natural history
13 of small fiber neuropathy, if you have a thousand
14 patients, 500 patients. When I talk to my
15 patients -- I have over a thousand small fiber
16 neuropathy patients now -- I tell them 70 percent 17 stay the same.
18 DR. FREEMAN: Rather than a vote, there are 19 people in the audience who actually have cohorts.
20 It's a question that I wanted to ask Rob in his
review, what is the natural history of this
22 disease? What do we know?
$1 \quad$ Giuseppe, what happened to your patients?
2 Karin, what's happening to your patients?
3 DR. FABER: Well, we didn't follow our
patients for a very -- because we see them, we make
5 the diagnosis, and they go back to their referring
6 physician. So we are planning on doing a follow-up
7 study. I think the best follow-up data are
8 available from the study of DeVechely [ph] and
9 Giuseppe [ph], and that described that part of the
10 patients, I think half of them stayed stable,
1130 percent had a decline, and very little -- I
12 think 10 percent or something like
that -- improved.
14 DR. FREEMAN: They seemed dependent because there were multiple potential etiologies.

DR. FABER: Yes.
DR. FREEMAN: That was in your pure group that 10 percent improved.

DR. LAURIA: This is something actually we don't know exactly, so we don't know at the long term what happens to these patients. Also we don't know what is the frequency of other systemic and
non-conventionally associated disorders that might
happen. So is this a fragile group of patients who
eventually can suffer from other disorders? Does
this maybe have a window for anything else? And in
terms of the evolution of the neuropathy, we know
that -- actually, we have started this long-term
follow-up study recruiting patients we've started
seeing 20 years ago. It will take a while
actually. But yes, the person is generally more or
less the same, but they come from a biased study.
It's not a wide study, including all who came across our center.

DR. FREEMAN: Rob, is there any clue from the reading that you did as to what the natural history is?

DR. SINGLETON: The simple answer is no. looked hard, relatively hard. I just don't think that there is a lot of information about the natural history in truly idiopathic neuropathy. There is obviously an abundance of natural history data in diabetic neuropathy. We know something about the rate of decline from work that Michael

Page 146
Polydefkis has done and that we've done both in
terms of clinical measures and also nerve fiber
density, but no equivalent work has been done in patients who have idiopathic neuropathy.

DR. FREEMAN: Where were we? I think Anne Louise, then David Herrmann, and then Nurcan.

DR. OAKLANDER: I can only speak to the apparently autoimmune. Obviously, the disease tempo is different in every disease, but in the patients with apparently autoimmune, we see, as was mentioned, an acute pattern where patients become abruptly ill, many are quite sick, and then they recover. Whether you treat them or you don't treat them, they get better.

A GBS-like pattern, if you will, we also see a CIDP-like pattern, if you will, where they're going to stay sick to a certain extent. No matter 18 what you do to them, they may get better or worse.
19 And we're going to publish a case of a very
20 carefully followed medical professional with a
21 relapsing, remitting form of being completely well, 22 off all therapies for years at a time, and then

1 having several episodes of steroid responsive
2 objectively documented with blood markers of
3 crudescence. So I think just as with other types
4 of neuropathy, there are different tempos probably
5 due to different underlying causes.
6 DR. FREEMAN: David Herrmann?
7 DR. HERRMANN: I think there are some 8 shorter term studies that look at chronic, small
9 fiber, shall we say idiopathic neuropathies, I
10 think David Wolk and others, over a 3 to 5-year
11 window. And I think a sizeable proportion of
12 individuals who start out with a pure small fiber
13 clinical phenotype will develop some mild large
14 fiber dysfunction over time. But I think that's
15 slow, and we see this clinically. That slow change
16 in signs over time may not necessarily be
17 associated with clinical change over time.
18 So we're treating these patients, and many
19 of these patients symptomatically or from a
20 patient-reported standpoint do well or improve with
21 the available treatments, at least symptomatically,
22 but their signs may slowly evolve over time. At

Page 148

1 least over 5 years, I would think the literature
2 would largely point in that direction.
3 DR. SINGLETON: Thanks, Dave. I had
4 forgotten to mention data that's out there, as
5 you've just mentioned, that shows that many
6 patients go from what seems to be predominantly or
7 even pure small fiber neuropathy to a more mixed
8 fiber neuropathy. I think that's important natural
9 history certain for diseases that don't have a
10 clear genetic background.
11 DR. FREEMAN: Okay. Where were we? Nurcan,
12 then Deb, then somebody else in that area, a lot of
3 people. Let's go. Nurcan?
DR. UCEYLER: Roy, just to comment on the 15 natural history, we also did not follow these 16 patients really systematically in a study, but from
the clinical experience, I would also say the
majority's really stable, and it is a small
proportion of patients. I would say even if they
developed large fiber signs, this is mild.
There is one new study from this year, a
very, very small group. I think it's a German
group, 16 patients that have been followed where
the authors come to the conclusion that large fiber neuropathy will develop. And in the majority of cases, I would not really go with this in the majority of cases. It is actually marginal.

Another point, the discussion has turned around now a little bit and coming back to one point that was asked. When we produce a new drug
against pain, what is then our outcome measure? Do
we have an objective measure, as far as I understood it. I think we have to distinguish here very carefully is it about idiopathic small fiber neuropathy. Do we treat a reason? Is there other etiology? Will we improve neuropathy, and do we have any correlation for pain in any of the tests we're doing? So far we do not have this.

Actually, when we're treating pain, the patient will tell us, okay, pain has become better.
But I think we cannot expect then, from fiber
density, or from QST, or from any other investigation, an improvement because this does not correlate with pain. So I think we have to
distinguish what are we trying to improve;
neuropathy, okay. Fiber density might become
better, then we can do a follow-up biopsy or we can
do QST. But for pain, we will now have anything
inherent at the moment.
DR. FREEMAN: And Simon's sitting next to me.
8 Go ahead.
9 DR. FABER: I think I completely agree with
you. That's a very important distinction we have
to make because otherwise, we define a biomarker
that should improve while in fact it will never
improve, and then you have a negative trial while the patients may be improving. So that's really important.

DR. OAKLANDER: How about using the term
"domains," and we can talk about treating the
different domains of small fiber neuropathy; the
symptom domain, the pathology domain, the
functional domain.
DR. FREEMAN: There may not be concordance.
To follow up on Nurcan's comments, Simon's sitting

1 next to her and is doing I think an excellent
2 systematic review just on that very question. I
3 don't know if you want to comment now or save it
4 for tomorrow.
5 DR. HAROUTOUNIAN: We're just finishing the
6 systematic review on looking at the associations
7 between intraepidermal nerve fiber density and a
8 variety of other domains, so QST symptom, signs,
9 NCV, autonomic testing, and the slide at the end of
10 my presentation, what are the associations between
intraepidermal nerve fiber density and each of
those. This is not in small fiber neuropathy per
se. We did it over the spectrum of distal
symmetric polyneuropathies. So with that carrot,
5 I'll just present.
16 DR. FREEMAN: The sodium channel people are
going to speak in a second. I just want to set up
and take my chairman's prerogative by asking a
question to Ahmet and Karin.
We heard two discordant views; at least to
me, they sounded discordant. In Ahmet's talk, he
said -- and I don't know if this represents his

Page 152
1 view -- that BMS, who sponsored the study that he
2 presented, withdrew from the selective sodium
3 channel antagonist field -- correct me if I'm
4 wrong -- following the results of that study. And
5 Karin in response to a question noted that if you
6 have a good selective sodium channel antagonist,
7 whether or not there are polymorphisms, she would
8 be very supportive of its use in patients who have
9 small fiber neuropathy.
10 I suppose another question that has always
11 been on my mind is actually what is the evidence
12 that having a polymorphism makes you more
responsive to a selective sodium channel antagonist
in that disease or perhaps could you be less
responsive?
16 DR. SINGLETON: Before you answer, can I
7 just add more questions?
18 (Laughter.)
19 DR. FABER: I can't remember, not
20 everything.
21 DR. SINGLETON: I know. We'll remind you
22 again. My question, you touched on this, just not

```
as much as I want you to, is what's the evidence
for epigenetic effects on sodium channels in
diseases like diabetic neuropathy? Can you speak
to whether inflammatory conditions, in metabolic
injury or derangement, how does that affect the
function of these sodium channels?
    DR. FREEMAN: Do you want to add a fifth
question, or can it --
    DR. STEINER: It's I think along a somewhat
similar theme, but if you start from the
perspective of somebody in development and the idea
that you want to work towards the treatment
symptomatic, in our case, for small fiber
neuropathy, we've discussed it in so many levels of
painful small fiber neuropathy, are we looking
specifically at pure? Should we be looking at
painful peripheral neuropathy?
    So to me, Todd, the taxonomy that you put up
was really helpful. The way that we should be
approaching it, should we be approaching it by
targeting patients who we know have genetic
mutations. Should we be targeting it at a broader
```

Page 154
level? I think that's one of the big challenges
before you even get to what the outcome measure is
and how important either the INFD count is, the
QST, and maybe there are differences, which was
already brought up earlier, about the results based
on the ideology.
DR. FREEMAN: Okay. You have five
questions. You've got 30 minutes.
(Laughter.)
DR. FABER: First, I think that if you
block, for example, Nav 1.7, and you would do it
very good, then you would diminish pain, whether it
comes from small fiber neuropathy or from any other
disease, because Nav 1.7 is a central channel in
the development of pain, so that's important.
The other thing is how would you design a
trial, and would you use only patients with pure
small fiber neuropathy? Would you use other
things? Well, it depends on what you want. But I
think that if you want to do it properly, you
should have a homogeneous group because if you mix
diabetic neuropathy, idiopathic small fiber

Page 155
neuropathy, and immune-mediated neuropathy, and a
drug does not work, then you will always say, well,
what happens if. And if it works, then you have a
proof of principle, and then you can go to other
5 groups. That would be my best way to go I think.
6 We did a small trial in patients with
Nav 1.7 mutation with lacosamide. Lacosamide is
8 also a sodium channel blocker, and it blocks
9 especially Nav 1.3, 1.7, and 1.8. That trial was
10 positive. It was an add-on medication, but it
really had a good effect in those patients, and
there was not a difference in patients that had a
proven pathogenic mutation, so with
electrophysiology, in patients that were suspected
to be pathogenic mutations. So that was really
helpful.
The next step would be to go to a bigger group of course, but in the meantime, I think we have better Nav 1.7 and 1.8 blockers to test, and those probably tested in a bigger group of patients.

DR. STEINER: No, I agree with you --

1 DR. FABER: Then for the epigenetic
things --
(Crosstalk.)
DR. STEINER: With a proof of concept, I
completely agree you start with a homogeneous
6 group. I guess I'm saying more what is the
7 eventual goal? Is the thinking that there's pain?
8 We know that Nav 1.7 is involved in pain, so
9 something that targets that is going to work in any
10 population. I'm saying is that the thinking?
11 DR. FABER: I don't know. I think that's a
12 reasonable hypothesis, but I don't know if that's
true. It's not very useful to say, okay, we will
treat any patient with pain because then your trial is going to be a mess.

DR. STEINER: I know.
DR. HOKE: But why do you think that's the case? If you think the Nav 1.7 is central to the 19 pain sensation, why shouldn't it work for any pain,
20 even osteoarthritis pain?
21 DR. FABER: It probably will, but you have
22 to --
disease modification.

DR. FABER: No, no.
DR. HOKE: If it's symptomatic, then you can theoretically test all pain patients.

DR. FABER: Yes. But I think that's why pharma is interested in Nav 1.7 or auto blockers because pain is a huge problem, and it's not the small fiber neuropathy on its own that's very interesting; it's the entire population that is interesting. The question is how do you start? I think that's the big question.

DR. HOKE: I mean, if it's really central to the pain sensation, and I think the preclinical data suggests it is, then where we have trouble defining the idiopathic neuropathy patients, there

## Page 158

are other painful conditions like osteoarthritis pain, which is much easier to define and probably test. I would go to those doctors [indiscernible].

But my question to the pharma would be, can
you actually develop a selective Nav 1.7 inhibitor
that won't have side effects, because it's such an
integral part of many other functions of neurons
and other cells, that it's going to be tough I
think to develop something safe.
DR. FREEMAN: I'm going to shelve that just for a second. I want to maybe ask Ahmet, if you were advising BMS, would you have advised them to stay in the field?

DR. HOKE: I think it would because I think the data from the gain-of-function mutations is very strong, and also loss-of-function mutations, again, clearly plays a role in pain sensation. I think the challenge is going to be coming up with a drug that will be really safe, because if you're going to use it in this general population like ibuprofen, it has to be a very safe drug, and I think that's going to be the big challenge in my

1 mind.
2 I think their initial idea was that they 3 wanted to, for a proof-of-concept trial, really

4 define the small subset that had pure
5 gain-of-function mutation that was enriched in the
6 neuropathy population, and that's how they wanted
7 to use their drug initially, and they didn't see
8 that, at least in our cohort.
9 DR. FREEMAN: Where were we? Amanda?
10 DR. PELTIER: I have I guess two comments.
11 One is about the whole, how you define small fiber
12 neuropathy. I think you really have to put a time
3 limit on it because I think we all know from
14 clinical experience that almost every neuropathy
5 that starts in one population will eventually
16 involve another; HIV, amyloid, almost everything
7 you look at. If you follow somebody long enough,
8 it will eventually hit the other fibers conversely.
9 CMT will then go back and affect those small fibers
20 even with PMP22.
21 I think you have to put a time limit on your
22 diagnosis of patients that have symptoms for $X$

1 amount of years and clinically still have
2 involvement of only these fibers, because if you
3 just say pure small fiber neuropathy, I don't think
4 there is any such thing. So that's my first point.
5 Then my second point is I think it goes back
6 to the questions circulating around the sodium
7 channel drugs because I think it's going to be an
8 issue as far as what your target is because -- for
9 example, all those medicines that were FDA approved
10 for painful diabetic neuropathy, we use for
11 everything else because we know it works for pain.
12 So going back to Ahmet's point, pregabalin
13 gabapentin,, duloxetine, we all use them for other
14 conditions besides diabetic neuropathy, which is
15 the cleanest most common painful neuropathy that
16 was easy to test and easy to get patients for. So
17 I think there is a rationale for including other
18 populations for those pain trials, but I think one
19 of the issues is going to be developing them for
20 specifically channel mutations per se I think is
21 going to be more challenging because -- I echo
22 David Herrmann's experience that l've been testing
sodium channel mutations for years in clinic, and I
see a ton of small fiber neuropathy. I actually
have only one patient that I found last week who a
variant. I'm not saying it was pathogenic.
So I think the experience in the U.S. for
most of us is that it's a lot less common, and I
think we still carefully phenotype these patients.
So I don't think it's an issue of not phenotyping
patients; I just think the mutation is just less common, where most of us --

DR. FREEMAN: Genotype or phenotype?
DR. PELTIER: Both.
DR. FREEMAN: You said we all phenotype.
DR. PELTIER: That's what I'm saying, is that my patients are phenotyped with a panel, not necessarily a whole exome sequencing. They're carefully phenotyped, and they still don't have the sodium channel mutations. And I see a lot of Pott's patients plus regular small fiber neuropathy patients. So I see the gamut of what you expect to see, those mutations, and we just don't find them.

DR. FREEMAN: So let me maybe ask -- and

## Page 162

this has always been a question that has plagued me
since the BMS PNRR paper. At the end of the paper,
the BMS writer wrote about a number of potential
limitations, technical limitations, as to why there
may be differences between the PNRR data and the
data coming from Netherlands -- Waxman -- and
Milan. I wondered to what extent what you, David,
PNRR saw is actually technical. How complete was
the sequencing done? Was it done in a similar way?
Are we missing something for technical reasons?
DR. FABER: Can I comment on that?
DR. FREEMAN: Yeah. I'd love for you to.
DR. FABER: I think that it sounds very
easy. You do a genetic test, and you have a
result. We had some very bad experiences with a
commercial bureau, who really missed a lot of parts
of the gene. If you don't check that -- we have a
very good molecular biologist who really checks
everything. If you don't check it, you will never
find anything. So that's one thing
So is the test really done very well? And
also, if you use next-generation sequencing, how

1 are your filter lines defined? Do you have a good
2 bio plan? Do you have a good bioinformatician?
3 Those are really crucial factors in defining
4 whatever variant you are going to find.
5 Another thing that was already mentioned is, 6 of course, there may be differences in genetic
7 background between the U.S. and Europe. We don't
8 know that, but I think these technical factors may
9 really play a big role. I would not rely on any 10 commercial cheap test, for example. So that's one 1 thing.
12 Then you also asked about the timeline of the symptoms. Well, we see a lot of patients, and a lot of patients have symptoms for decades when they come to us, and they have a pure small fiber neuropathy. So in my opinion, the majority of the patients will stick to a small fiber neuropathy, or 8 if they develop something, then it's really minor.
19 So that's the majority of the patients.
20 Giuseppe, I think you wanted to add
something as well.
(No response.)

Page 164

1 DR. FREEMAN: David Herrmann, Gordon Smith,
2 Nurcan, and Chris. Try and remember.
3 DR. HERRMANN: Two brief points. In terms
of defining these disorders and then thinking about
5 populations to test sodium channel blockers, while,
6 Ahmet, you argued for lumping people together
7 because you say targeting Nav 1.7 might be a
8 universal target for pain disorders, I still think
9 that as clinicians, I would rather argue to test in
10 multiple models, a test that separate out the
11 models because the mechanisms are complex. And we
may see differential response rates depending on
broad categories, be it osteoarthritis, small fiber
neuropathy, distal small fiber neuropathy,
et cetera.
So it's still to argue for testing in
multiple separate models rather than just a
generalized pain indication. And I think we still
want to know whether a treatment's highly effective
in a large percentage of patients within a model or
1 just only effective in 20 percent.
22
DR. HOKE: I agree. Like if you're going
to -- I would argue that there are probably easier
clinical targets than small fiber neuropathy where
we are debating how to even define the disease
population. So if it is truly generalized pain
mechanism, pick something, post-herpetic neuralgia.
It's a very clear-cut patient population that you
can test.
DR. LEVINE: The other advantage to
splitting the groups out is that we've got
experience, both duloxetine and Lyrica, where doses are different in the different models. So the dose
that works for diabetic neuropathy may be less than
the dose that works for post-herpetic neuralgia.
So if you do lump them together, they all just get the same dosing. You may miss that as well.

DR. FREEMAN: Maybe to editorialize a
little, I think there really are three issues. One is when you're doing a proof-of-concept trial, you
want to remove as many confounders as possible, and
one of the first steps in doing that is to have
your populations and the study as specific as possible.

## Page 166

The next point -- and l'll maybe only make
two points -- is that even within a specific
disease -- let's just say PHN or small fiber
neuropathy -- a number of us have been focusing on
different pain phenotypes as a way to address the
underlying mechanism. And I think even in a
disorder like PHN -- and I won't go into
details -- as you say, a relatively pure disorder,
the pain phenotype varies. And to me, there's no
question that the response to an intervention is going to be different depending on the phenotype
because that phenotype has to in some way reflect
the underlying pain mechanism.
Then finally, osteoarthritis, I imagine if
we put a group of obsessive, compulsive
neurologists on to osteoarthritis, we would spend
hours discussing the different pain characteristics
that exist in that population. I do think that
it's not as simple as all that.
Chris?
DR. GIBBONS: I actually want to get back to
Karin's point, which I thought was really critical,

1 the issue you raise, which is genetic testing and
2 quality control. I think that's actually something
3 very simple that this group could accomplish in
4 short order, which is you have very well
5 characterized patients with mutations. They really
6 should be tested across the different commercial
7 labs. We need to know who is viable as a place to
8 get our testing done, without which, clearly, we're
9 going to be in a complete quandary.
10 DR. HOKE: If I can comment, I work with
GeneDX. If you use their whole exome sequencing to
get at the Nav channel mutations, they say that
their sensitivity is only about 90 percent. So if
you're really interested in Nav channel mutations,
you have to specifically ask for sequencing of those genes.

DR. FABER: And you would need single sequencing, but even -- I had a bad
experience where they said they do single
sequencing, but still missed some parts of it, and
they didn't correct for that.
DR. FREEMAN: It was Nurcan, and then

Page 168
Giuseppe.
DR. UCEYLER: First of all just another
comment on the genetic aspect, as another European
center with less patients but very well
characterized also clinically, we do
6 next-generation sequencing in all of our patients
and still would have much lower, as I commented
8 early in the morning, numbers, the published ones.
9 I don't know what the reason can be
10 One thing I wanted to ask here is, in your patient cohort -- so this was prospectively
recruited patients -- you did not maybe also
include -- for instance, after having one index
patient, then the siblings, which would increase
the number, of course, in the study population.
DR. FABER: The number of families are
extremely low, so, no, that's not included in the 12 --

DR. UCEYLER: So you did not further recruit them when you have an index patient, that you say, okay, do you have siblings --

DR. FABER: Of course, we do family
investigations. We do that, but that's something
else; or the co-segregation, we do that. But these
are single patients, and the number of family
members are extremely low, so the percentage is
really for probands.
DR. UCEYLER: So the percentage is without including further siblings after having found one in those patients.

DR. FABER: Yes.
DR. FREEMAN: Giuseppe?
DR. LAURIA: We've been analyzing the exome
sequencing from around 15 families, in which we got
3 -years DNA sampling and so on. But I want to
bring your attention to the fact that we should not
follow the idea that this is a monogenic condition.
I think it is quite important because this is a
condition in which -- our understanding or our
hypothesis actually -- let's put it in this
way -- is that there is possibly -- and based on
the data which are relatively different from those
that Ahmet presented there is a susceptibility
background, a genetic susceptibility, clustering a

Page 170
different subgroup of patients. We decided to
divide into painless and painful. Of course,
there's a lot of work to do in terms of subdividing
the painful groups by phenotype and whatever.
As to the analysis, the number of patients in which you would find one single pathogenic mutation, assuming the time that you need to define that mutation, that the variant that's pathogenic,
which is a long time, is clearly low. So assuming
that the quality of any commercial company will be fine, I don't know whether we are going toward the right direction with this discussion.

DR. FREEMAN: Eva, and then I want to ask a question.

DR. FELDMAN: Eva Feldman, University of Michigan. Maybe this will sound like heresy, but I
think in 99 percent of the patients, this really
isn't an issue, and I'm almost surprised we've
spent this much time talking about genetic testing in that.

I think that we all have the experience primarily that the variants are not affecting our

1 clinical practice. I also think that we all agree
2 that the sodium channel is a target. You can use
3 an analogy of myasthenia gravis. We know the
4 acetylcholine receptor is a target, and we target
5 it. We don't see multiple genetic variance in that
6 particular receptor. And maybe that's not the best
7 analogy, but we understand scientifically and
8 mechanistically that the sodium channel is a
9 target. I think we probably have a consensus that
10 whether or not there is a variant in that channel,
11 we shall move forward with clear, well-defined
12 populations and potential new clinical trials.
13 So whether or not there is a variant or
14 isn't a variant, I don't think should really drive
15 further discussions necessarily at this meeting.
16 DR. FREEMAN: I'm sure we will come back to
17 this, and I think we have enough, how should I put
18 it, foment for discussion. Let me come back to
19 something for which I have less clarity, and I'd
20 like to get a little bit more clarity. That is the immune factors in small fiber neuropathy.

The way I see any intervention, and IVIG in

1 particular given the expense associated with it.
2 There two approaches. One is I would never ever
3 give this therapy in the absence of a double-blind,
4 randomized, placebo-controlled clinical trial for
5 condition $X$, and here we're talking about small
6 fiber neuropathy.
$7 \quad$ At the other end of the spectrum is this is 8 such a devastating condition, patients have such
9 impaired quality of life, I am willing to try
10 anything, even if there is a chance, however small,
11 that this will improve patients' quality of life,
12 sense of well-being, even if it's the 22 percent
13 placebo response, which Todd showed in his slide.
14 I would like to get a sense of where people 15 stand on the spectrum. And having said that, then
16 the subsequent step is if we stand somewhere in the
17 middle, what are the criteria that you would use
18 for deciding that this is reasonable to do? And
19 I'm obviously most interested in a clinical trial,
20 but I suppose as information to judge that, even in
21 clinical practice. And we've got a couple of
22 minutes left. I'd just like to raise that as a

```
    possibility for discussion.
    DR. FABER: Can I add one thing?
    DR. FREEMAN: Of course.
    DR. FABER: We are performing a
double-blind, randomized trial now with IVIG. We
never treat patients that are not in the trial
because that's something that's not going to be
reimbursed in the Netherlands without a good
indication. But we are performing the trial, and
it's supposed to be finished by the end of this
year.
DR. FREEMAN: So here we have we'd never do
other than in a clinical trial.
    DR. LEVINE: In your trial, though, what is
    the patient population and how did you select that
    they might be immune, or did you just take
    all-comers of small fiber?
    DR. FABER: Because the definition of immune
    is very difficult, as you already said, we decided
    we would not go into that. So people with a clear
    immunological disease that should be treated with
    whatever the immunologist says it should be
```

                    Page 174
    treated, those are not in the trial.
        DR. LEVINE: These are idiopathic small
    fiber?
    DR. FABER: Yes.
    DR. FREEMAN: Does anybody else on the panel
    want to address the question or in the audience?
    DR. HOKE: I think the big challenge is
    going to be how to define the immune-mediated small
    fiber neuropathy patients.
    DR. FREEMAN: So you would be more selective
    in a clinical trial than Karin?
    DR. HOKE: I think so. I think the patient
    population that I would think needs to be tested
    are people who have a progressive type of
    neuropathy symptoms, not the acute onset that's
    monophasic and then stable or improving, because I
    think those patient populations will probably
    improve on their own. At least in my experience,
    I've done probably skin biopsies in about 10 or 20
    of those, and they do improve over time. But the
    ones who are progressive, and especially if there
    is an autonomic neuropathy component, that's a big
    1 one. That group of patients probably had some
2 autoantibodies that we don't recognize yet.
3 So we're actually working with our Sjogren's
4 clinic colleagues. Out of 300 or so Sjogren's
5 patients with small fiber neuropathy patients, we
6 have identified 2 novel autoantigens that bind to
7 DRG in both human DRGs and rat DRGs. So we're
8 writing those papers up right now. And the
9 frequency of these autoantibodies are relatively
10 low. One is about 7 percent; the other is
1114 percent. I suspect there is going to be a lot
12 more, and these are often patients who are
3 non-length-dependent small fiber neuropathy
4 patients.
15 DR. FREEMAN: I'm going to put people on the
16 spot and ask for clarification because we're going
7 to need it. Define progressive; symptomatic pain
18 or something more objective?
19 DR. HOKE: I think for a lot of those
20 patients, it's either the intensity of the pain
21 changes over time or the location. If it started
22 in the hands, it may spread 2 or 3 months later

Page 176

1 down to the trunk or to the legs. To me, that's
2 progressive.
3 DR. FREEMAN: But pain, not small fiber
4 sensory loss and not skin biopsy changes.
5 DR. HOKE: I mean, if you had that type of
6 data, that's even better. You can define it.
7 DR. FREEMAN: But pain for you is
8 sufficient. I apologize for putting you on the
9 spot, but these are -- I don't apologize a lot.
10 (Laughter.)
11 DR. HOKE: So I would like to see skin
12 biopsy changes. And in fact, I think one of the
13 issues we need to define -- and I think I was
14 talking with Nurcan earlier -- if we use this
15 strict criteria of reduction in intraepidermal
16 nerve fiber density, we probably are missing a lot
17 of non-length-dependent small fiber neuropathy
18 patients, where the only findings on the biopsy are
19 sometimes axonal swellings and fiber fragmentation
20 at all three sets. At Hopkins, we routinely do
21 three-set biopsies, and if I see that in patients
22 with systemic symptoms, I consider that as a

```
painful, non-length-dependent small fiber
neuropathy.
    DR. FREEMAN: Can I put a few other people
on the spot? Maybe, Eva, you're sitting there
quietly. What's your approach? You've thought
about this.Are there patients with small fiber
neuropathy that you treat with IVIG, and if so,
who?
9 DR. FELDMAN: No, I have never treated a
patient with, quote, "inflammatory small fiber
neuropathy," with IVIG that I did not know had a
clear underlying other autoimmune disease, such as
SLE, sarcoid, et cetera. And then in those
patients, I actually did not use IVIG.
    I will tell you that I do see in my practice
    a large number of fairly obese individuals who turn
    out to be prediabetic who are being treated with
    IVIG for inflammatory small fiber neuropathy. And
    when the IVIG is discontinued, there's no change in
    the course of their disorder.
    DR. FREEMAN: So these are patients that are
    referred to you.
```

    Page 178
    1 DR. FELDMAN: Yes, for lack of response of
    their inflammatory small fiber neuropathy on IVIG.
    That's my most common encounter with IVIG in small
    fiber neuropathy.
    DR. FREEMAN: So you're at that end of the
    spectrum.
    DR. FELDMAN: I am way, way, way --
    DR. FREEMAN: I've got way, way, but off the
    spectrum.
    DR. FELDMAN: -- off the spectrum
    DR. HOKE: I don't treat anybody either
    unless they have evidence of Sjogren's, sarcoid.
    But maybe Michael can comment. I know he has some
    experience with the neuro Gl group at Hopkins who
    has severe GI autonomic dysautonomia, and at
    Bayview, they have some patients who were treated
    with IVIG.
    DR. POLYDEFKIS: In general, I'm not a
    proponent of treating small fiber neuropathy with
    IVIG. I think it's quicksand. And just looking at
    the numbers that Rob put up, we could bankrupt the
    country with IVIG. But in response to Ahmet's
    Page 179
1 comment, there was this population of patients with
2 gastroparesis that was well documented, where
3 essentially everything failed. And a little bit on
4 a whim, we tried to treat them with IVIG, and its
5 subset clearly did improve.
6 All that said, it's become so difficult to
7 get IVIG improved for those patients. I'm not sure
8 it's going to continue.
9 DR. LEVINE: I was going to make one quick 10 point. Actually, I was going to make the point in 1 my talk, and I forgot. When we talk about 2 immunomodulatory therapy for small fiber 3 neuropathy, I think we also have to be very careful 4 because we know of many immune-mediated 5 neuropathies that don't get better with IVIG, and 16 they'll only respond steroids. The vasculitides 7 don't get better with IVIG. We tend to conflate 18 the idea of immune therapy with IVIG, in this 19 country at least, because that's what everyone's
20 out there doing. But it may be a big mistake
21 because if we don't understand the pathology, we
22 may actually be missing a population of patients
Page 180
1 that we could treat with steroids or other
2 therapies.
3 DR. FREEMAN: James?
4 DR. RUSSELL: I think we need to get back to
5 the science here. We're kind of out here playing
6 Star Trek basically. What we really need to do is
7 we need to understand the pathophysiology, and we
8 need really good biomarkers that tell us this truly
9 is an inflammatory process and this has to be
10 rigorously done, and it has to be confirmed by
11 several groups.
Once we're at that point, then I think we
3 can say, right, we can then do our clinical trial
4 and we can use this as an endpoint target for
15 future studies. But I think we have to take a step
16 back at this point and really get to the
7 pathophysiology and get some hardcore scientific 18 endpoints.
19 DR. FREEMAN: So can I maybe just elaborate
20 on this just a little? And I know we're running
21 really late. Maybe I should stop because this is
22 going to be I think a period -- a topic that we
will discuss, and I ask both of you and Nurcan
So the work coming from the Pestronk lab, would you regard those as hard biomarkers? Are
those epi phenomena? What do you think of that?
5 And the same question is going to be directed at
6 Nurcan in the evidence of inflammation found in
7 skin biopsy.
8 Eva, stop smiling.
9 (Laughter.)
10 DR. RUSSELL: My view of this is that if you can really show it in the skin biopsies, and you can show that there is a change over time, which correlates with the patients' clinical outcomes, and that it really reverses with a treatment, then I think you can believe they are useful and reliable. Beyond that, you have a problem with interpretation.

DR. FREEMAN: At this point in time, what do you suggest?

DR. RUSSELL: I think we need to start looking at the skin biopsies. We need to start looking at some of the markers that Todd was

## Page 182

mentioning, and perhaps some other markers as well,
and see whether any of those things show change
over time, show correlation with clinical outcomes,
and then we can start looking to see if they are
reversed with treatment.
DR. FREEMAN: Eva, for smiling, I'm going to ask you what your thoughts are.

DR. FELDMAN: Alan Pestronk is one of my
closest friends, so I'm smiling in that I think
that he's opened up a very interesting field. And I don't know how much of the data are really pathogenic. As James says, we really -- I don't think necessarily that's the core of this meeting, but we do need to get back to the basics, and we have really strayed from that in terms of mechanism.

DR. FREEMAN: So it will be Nurcan and then I think to provide a little balance, last word from Anne Louise.

DR. UCEYLER: The question was about the inflammatory markers and the skin, and what I would think about them. I think this is very, very

1 important to follow. There can be, in the
2 periphery, mediators that do affect the fibers and
3 then maybe also increase pain, not only looking at
4 the neuron with the mutation, but also in the
5 periphery, this is what I think is a very important
6 aspect. But we do need much, much more research on
7 this.
8 What we are currently doing is we are trying
9 to follow up our data that I just mentioned, now
0 looking at expression from skin cells, really. You
can use biopsies for many different things. So
what we are doing is we're looking at fibroblasts
with kerotinocytes. This is ongoing work in a
large group, and let's see what comes out then.
But these are single studies at the moment. We
need much, much more experience here and more data
before we can answer is this now really
inflammatory or any other aspect that really feeds pain here.

DR. FREEMAN: Giuseppe, and then Anne Louise.

DR. LAURIA: Actually, we just don't know.

1 We don't know whether there is any real change in
2 the skin. I agree that something may happen, but
3 we don't know the influence of a number of
4 variables which can affect the level of the
5 cytokines in the blood, considering the skin which
6 is a much dirtier environment.
7 Just to make an example, the levels of the 8 interlukin-2, and 10, and TMF changes with the
9 pressure and recovers, so we don't know -- if you
10 are not balancing. To my knowledge, what we know
11 is that in the clear immune-mediated neuropathy in
12 the skin, you can find some changes which are
13 related to the pathogenic mechanism of that
14 neuropathy, in CIDP, for example the neurofascin.
15 But in this field, which remains quite blurred, I'm
16 not sure.
17 DR. FREEMAN: Anne Louise, closure. Your 18 comment is between everybody leaving for lunch.
19 DR. OAKLANDER: Biomarkers are critical.
20 They have to be time linked. Biomarkers are going
21 to change during the course of the disease. If
22 somebody's already lost 98 percent of their nerve
endings, they may no longer have inflammation, for
instance, in the skin. And immunotherapy, not
monolithic -- any therapy with regards to the
inclusion criteria, you have to look at the costs
and the risks. And the more expensive and
potentially dangerous the therapy, if somebody
wants rituximab or bone marrow transplantation, you
really have to have a very high threshold. And
also I think you have to prescribe very short
courses.
So l'll say l'll consider a trial for you, and I try to follow the ICE for IVIG, and do not
prescribe more than a 3 -month trial, and I see that
person back, and I'll evaluate, and I will not
continue unless there's clear evidence.
DR. FREEMAN: This was a terrific session.
I'll leave you to ponder bone marrow transplant --
(Laughter.)
DR. FREEMAN: -- for small fiber neuropathy at lunch.
(Whereupon, at 12:13 p.m., a lunch recess was taken.)

## Page 186

## AFTERNOONSESSION

(12:13 p.m.)
DR. DWORKIN: I think it's time to get
started. Roy has asked me to serve as moderator
for this afternoon session, so my objective for the
next three hours or so is to do half as good a job,
at least half as good a job as what Roy did this meeting. So I hope I succeed.

Two quick things before we get started.
This morning I mentioned, in talking about the history of ACTTION, the kind of absolutely pivotal, critical role of Bob Rappaport, who's now joined us for this meeting. So I just want to reiterate what I said this morning, Bob. Without your vision, we wouldn't be here, and we all appreciate it a great deal. Thank you.

The second thing, for those of you who missed it, Francis Collins, the director of NIH, just this morning announced the HEAL Initiative.
That acronym stands for -- let's see if I can remember this -- Helping to End Addiction Long Term. And as part of the announcement, he said

1 that NIH's budget for fiscal year 2018 will be
2 increased half a billion dollars from what it was
3 in 2016. And that half a billion dollars will be
4 devoted to two broad sets of questions addressing
5 opioid use disorder, kind of the development and
6 treatment of addiction and improving the treatment
7 of pain so that fewer patients will need to try
8 opioid analgesics.
9 Improving the treatment of pain will involve 10 prospective studies apparently of the transition
11 from acute to chronic pain; setting up a clinical
12 trial network dedicated to studying pain;
13 et cetera, et cetera. It's all online, and I think
14 it's hard to imagine how this isn't anything but
15 good news for many of us in the room who are
16 interested in understanding pain and its treatment.
17 So without any further ado, it's my pleasure 18 to introduce Dr. Simon Haroutounian. Simon is an 19 assistant professor of anesthesiology at Washington
20 University in St Louis, and he has done a
21 comprehensive systematic review of the criteria 22 that have been used in studies of small fiber

1 neuropathy and is going to, for the next half hour,
2 present what he's found in his systematic review to 3 us.
4 Presentation - Simon Haroutounian
5 DR. HAROUTOUNIAN: So much for this
6 introduction. I think before we start with the
7 slides, I want to present one slide from another
8 systematic review we just finished and going to
9 submit probably sometime this week, where we looked
10 at distal symmetric polyneuropathies and tried to
11 look at the associations between intraepidermal
12 nerve fiber density and other parameters such as
13 neuropathy score symptoms and various QST
14 parameters or some of the other more objective 5 functional measures.
16 Just quickly to go through this slide,
17 again, this is distal symmetric polyneuropathies in
18 general, not only small fiber neuropathy. I just
19 hope this can contribute to the discussion. In
20 general, this pie chart shows what percentage among
21 the studies that have included studies of small
22 fiber -- distal symmetric polyneuropathy have

```
assessed those specific parameters.
    For example, among those studies, only
    1 1 \text { percent have looked at objective neuropathy}
    scores, 25 percent have looked at the association
    between pain symptoms and interpreting when they're
    fiber density' }14\mathrm{ percent between -- is this
    supposed to be warm detection threshold, and
    et cetera.
    The color coding is that the green
    association is there is a positive association
    between reduced interpretable fiber density and
    those parameters. So the greens are positive
    association or expected association; blue is that
    they found no association; yellow is mixed; and red
    is that the association was in the opposite
    direction.
    Just to briefly go through this in terms of
    pain symptoms, the association between epidermal
    fiber density and pain symptoms is very -- or could
    say probably nonexistent. Only about 40 percent of
    studies that have looked at the association have
    found positive correlation between the two. In most
```

    Page 190
    studies it was negative.
    The two that have the highest or the closest
    correlation are neuropathy scores on questionnaires
    like MNSI or it looks at neuropathy rather than
    just symptoms contact heat evoke potentials, laser
    evoke potentials, and NCVs that find pretty
    reasonable association with skin biopsy findings.
    Among the QST measures is probably the warm
    detection threshold that is most closely related to
    interpreter or more fiber density and not so much
    the others, so just to answer some of the questions
    that were raised in the beginning.
    I'll present -- I think I'll skip this
    slide. Most of the things were already discussed.
    We did a systematic literature review to try to
    look at idiopathic small fiber neuropathy, either
    clinical trials or mechanistic studies that have
    characterized the patient populations with the
    objective of assessing the diagnostic criteria for
    idiopathic small fiber neuropathy, and then
    potentially to bring this data and show it here to
    help our discussion on kind of refining the
    1 criteria for idiopathic small fiber neuropathy.
2 So we did a systematic literature search
3 back in July of last year. We used those keywords
4 to identify studies of small fiber neuropathy.
5 When we ran all those keywords, we found about
643,000 papers that somehow related to small fiber
7 neuropathy or neuropathy or pain, and it's not an
8 amount you can work with.
9 So we limited it a little bit to primarily
10 human studies and including reviews and
11 meta-analysis, English language. This is just if
12 you're facing a PubMed search, you will get what we
3 received as a result of this search. And it ended
14 up with about 6,000 abstracts that would be 5 potentially relevant to this review.
16 So the idea was to look through this
17 abstract and obtain the full text of the papers, if
18 these were either clinical studies, epidemiological
19 observational or interventional, or if this were
20 reviews or guidelines on small fiber neuropathy.
21 The point was to include patient population and who
22 has SFN, which is either idiopathic or is of

Page 192
1 unclear or mix etiology. So we didn't want to
2 focus on patients who have diabetes,
3 polyneuropathy, or chemotherapy-induced peripheral
4 neuropathy. Much rather, those groups, they're
5 either idiopathic, or kind of mixed, or included.
6 So we excluded animal studies, ex vivo and
7 in vitro studies, or studies with kind of
8 well-defined etiology.
9 Two people independently screened all those
10 6,000 abstracts, Mathias Leinders who's a postdoc
11 in my lab, and Marta Campagnolo who works with Roy
12 at Harvard. And basically they color coded those
13 abstracts by either those who seemed to be relevant
14 or maybe relevant, and then excluded to two
15 different categories, either to the studies that
16 have a well-defined etiology or studies that look
7 to be kind of irrelevant. So we have this record.
18 In terms of the results, it ended up having
19 about 594 papers in these green and yellow category
20 that look either relevant or may be relevant, and
21 another 11 papers were identified from the
22 references of the different papers.

```
    We built this database where we
    systematically applied certain criteria to see if
    we're extracting the full data from those papers or
    that we're putting them aside. And we're primarily
    excluding nonhuman studies. Again, sometimes
    papers state that this is idiopathic or small fiber
    neuropathy study, but all patients are diabetic, so
    those would be excluded in that case
    We also excluded studies with less than }1
    subjects, which would actually exclude some of the
    clinical trials that were done in small patient
    populations. But we ended up having }123\mathrm{ papers in
    this group for which we extracted the full data on
    patient characteristics, biopsy findings, QST
    findings, et cetera.
    Out of this group, there were 38 that was
    either reviews or guidelines. Only 11 studies met
    the characteristics that they were called
    idiopathic small fiber neuropathy, and actually it
    included patients for whom the etiology was
    unknown, so kind of completely idiopathic.
        The largest group was what's called mixed
```

    Page 194
    small fiber neuropathy, so these were small fiber
    neuropathy patients, but the study group included a
    variety of either mixed etiologists, and then I
    think maybe and Gordon's presentation that will
    follow afterward will help us kind of figure out
    who are the patients who we can call idiopathic or
    we can give other names.
    This is this a lot of data, so I will
    present only kind of semi quantitative analysis of
    those. The way l'll present it is basically a I'll
    present those 11 iSFN papers and those 74 mixed
    small fiber neuropathy papers. This is kind of
    mapping where we looked at the variety of
    parameters, the QST, a skin biopsy, symptom
    measures, sign measures, et cetera. And we map
    them or color code it in a way that green would be
    the expected association, no difference between
    controls or association. In the unexpected,
    opposite direction, all the results were unclear
    and mixed.
    You will see that some of the boxes have
    this kind of cross-line, which means that the study
    1 compared patients to healthy controls. And if it's
2 coded in this way, it would be the comparison is
3 either to some kind of historic group or just with
4 inpatient -- if it's a patient with distal
5 symmetric polyneuropathy findings in the painful
6 side versus non-painful.
7 I'll start with the guidelines. If we look at a variety of recommendations of what we should
9 include in the diagnosis of small fiber neuropathy,
10 there have been about 38 different guideline papers
1 on this topic.

3 do we need sensory symptoms in this length
dependent distribution; things like burning pain;
paresthesia for the diagnosis of small fiber
neuropathy; abnormal pin prick in length-dependent
fashion; abnormal QSART; autonomic testing results'
abnormal thermal perception; autonomic symptoms;
abnormal skin biopsy that is with reduced
intraepidermal nerve fiber density; and normal
nerve conduction study to confirm this is small
fiber neuropathy; or a battery of autonomic tests;

Page 196
1 and variety of laboratory tests to exclude other
2 causes of neuropathy.
3 So the findings are, in general, in the
4 different guidelines for SFN, you can see that
5 about 87 percent of guidelines recommend that we
6 should include sensory symptoms in the appropriate
7 distribution as a part of our diagnosis.
8 Seventy-one percent of guidelines recommend
9 that we include normal nerve conduction studies as
10 a part of SFN workup. About 84 percent of
11 guidelines recommend to use a skin biopsy to
12 confirm small fiber neuropathy. And as you can see,
13 there's a variety of other parameters, about
40 percent recommend using a normal pin prick as a criteria; 24 percent recommend using a quantitative
sudomotor axon reflex; 66 percent recommend using
abnormal thermal perception like QST; and then
8 about 40 percent using autonomic symptoms; and
19 smaller percentages of guidelines recommend using
20 either kind of a full battery of autonomic tests or
1 exclude patients by doing laboratory diagnosis
22
So this is just too small to figure out
anything, but this is the way we mapped the
studies, this set of the studies. It's 11 studies
of idiopathic small fiber neuropathy. You can see
that each study is here on the left side, and we
looked at each of those parameters that were
assessed in those patient populations: skin
biopsy, distal proximal, or other CCM; corneal
confocal microscopy; and then a variety of QST
parameters; cold detection, warm detection;
neurosensory alignment; et cetera; vibration,
et cetera, et cetera; nerve conduction data;
additional tests like laser Doppler; flare or synthetic skin response; skin wrinkling; contact heat evoked potentials; laser evoked potentials; and then a variety of autonomic tests.

I think the striking part is there are a lot of white boxes, which means that those parameters were not assessed in those studies. So I think Nurcan is leading the way with the study that has assessed most of the parameter. But in any case, this is a representation of those findings; so, again, 11 studies that are called idiopathic small

## Page 198

fiber neuropathy and have included patients in whom the etiology is really unknown.

In terms of skin biopsy, 73 percent of the studies, 8 out of the 18, have looked at distal
skin biopsy, and all of them are green, so confirm
that those patients have reduced intraepidermal
nerve fiber density. Only 3 of those 11 studies have looked at proximal biopsies, but again, all of the data was in the same direction.

In terms of nerve conduction, EMG versus NCV, only two of the studies have looked at basically normal EMG. And then in terms of nerve conduction velocity, three of the studies have shown negative or normal NCV, and one has shown mixed results.

In terms of QST, you can see that most of the parameters have been assessed in very few studies, so there's not much data we can draw from
it. I think the three parameters that are probably
worth discussing are the cold detection, warmth detection, and vibration detection thresholds.

In terms of cold detection thresholds, there

1 are eight studies that have looked at cold
2 detection. In 5 out of 8 , the patients have
3 impaired cold detection, but you can see that in
4 two studies, the results were mixed, and in one
5 study, 2 patients did not have any difference from
6 controls.
$7 \quad$ In terms of warm detection, five studies
8 have looked at it and four have found impaired warm
9 detection in inpatients with idiopathic small fiber
10 neuropathy, and one has resulted in mixed results.
1 In terms of vibration detection, six studies have
12 looked at it; four have found normal vibration
detection thresholds in this population, and two
have found abnormal. But the rest are
really -- the interesting thing is studies that
have looked at pinprick in the idiopathic small
fiber neuropathy, all the results are mixed. So it
doesn't seem that pinprick is really separating
small fiber neuropathy from controls.
In terms of additional tests, again, very
few studies have actually looked at those things.
I don't think it's even a point in focusing on

1 those.
2 (Laughter.)
3 The second metrics -- again, I just
4 presented it to look at the number of white
5 empty cells. There's so much work to do to try to
6 understand what are the different associations.
7 You can see those columns that are filled
8 primarily. These are the distal skin biopsies that
9 most of the studies have performed. This is
10 proximal skin biopsies. These are called detection
11 and warmth detection, and these are the nerve
12 conduction of muscle, and this is vibration.
13 Again, to kind of summarize the data from
14 this ugly metrics, we're looking at the same
15 parameters in this group of -- again, these are all
16 small fiber neuropathy, but the populations are 7 mixed in a way.
18 In terms of skin biopsy findings, you can
19 see that 70 or 80 percent almost have distal skin
20 biopsy, and in the vast majority, the skin biopsy
21 was different from healthy controls, kind of to
22 confirm small fiber neuropathy. A smaller amount
of studies, about 40 percent, have looked at
proximal biopsies. Only seven percent of all the
studies have looked at a corneal confocal
microscopy, but all of those five have shown
differences from healthy volunteers and in production.

In terms of nerve conduction, again, you can
see in some, the results are mixed in terms of
excluding patients. There are probably some
subgroups of patients with large fiber involvement
because in a proportion of those studies, the results are mixed.

In terms of QST, there doesn't seem to be a very consistent pattern in those patients compared to controls. So even when we're looking at things they call detection warmth detection, we can see that only about half of the studies have shown clear differences between those small fiber neuropathy populations versus controls. And in the other half, the data or the endings have been mixed.

The same with vibration detection, it's only

Page 202
about half of the studies where the vibration
detection was normal in those patients compared to
healthy controls, but in the half of the studies,
there were differences or the results were not as
straightforward.
So I think just by looking at the data, we
came to realize that it's even more complicated
than we thought it is, but nevertheless, these are the findings.

In terms of additional tests like autonomic, et cetera, you can see the picture is vastly mixed in terms LDI flare, which is just heating up the skin and laser Doppler response, sympathetic responses. Autonomic testing results, again, only a small proportion of studies have looked at QSART, 11 percent, but about half have found consistent differences between SFN and healthy controls, and about half have found mixed findings, and autonomic testing has been also not very consistent.

The thing is, though, you can see those three tests, like contact heat evoked potentials, laser evoked potentials, and histamine skin

1 response, again, there have been testing in a very
2 small proportion of studies, 5 percent, 4 percent.
3 I don't know if there's a reporting bias or not,
4 but those seem to be pretty consistently separating
5 small fiber neuropathy versus healthy controls.
6 I think one of the discussions maybe should
7 be around those special tests, is there room for
8 expanding those and maybe having more data in
9 larger patient cohorts, or what might be the
10 publication bias associated with those.
11 As almost another search, we looked at
12 clinical or therapeutic trials of small fiber
13 neuropathy and looked just at the inclusion
14 criteria, not the characterization of patients. We
15 just looked what kind of criteria people use in
16 clinical trials for enrolling patients with small
17 fiber neuropathy. Most of them are therapeutic
18 clinical trials. There are a few that are overview
19 of studies. And those too have the same patient
20 population in a way, but most of them are
21 therapeutic clinical trials in small fiber
22 neuropathy.

Page 204
1 Interestingly, about 90 percent have relied
2 on relevance symptoms to enroll patients in the
3 study and about 70 percent have used some kind of
4 pain severity cutoff, most of them 4 or more on a
50 to 10 numerical rating scale. And the interesting
6 thing is that although most guidelines recommend to
7 use keen biopsies for diagnosing small fiber
8 neuropathy, if we look at SFN confirmation by skin
9 biopsy, only 22 percent of the clinical trials have
10 used skin biopsy to confirm small fiber neuropathy
11 in these patients, and we had a discussion whether
12 it's a useful or important tool for inclusion or
not.
About half of the studies use nerve 5 conduction to exclude abnormal nerve conduction as
16 criteria for inclusion, exclusion of other
predisposing factors, and then about a third of the
studies use QST, again, to confirm small fiber
neuropathy to enroll patients in the study.
This is kind of the overall high level,
maybe semi-quantitative presentation of the
22 findings from this systematic review, so l'll just
try to summarize those. I know those histograms
were pretty confusing.
Clinical trials, there were 27 clinical
trials in SFN, and in terms of inclusion criteria
they used, so neuropathy symptoms, inappropriate
distribution that were used by most of the studies,
and then certain pain severity cutoff, and then SFN
confirmed by normal nerve conduction. So these
were the main criteria most studies used.
DR. HOKE: Can I ask a question? How do
they design a trial that excludes neuropathy? I
mean, how did they include patients that didn't
have the neuropathy symptoms? What was the
definition of the -- like that 11 percent of the patients who --

DR. HAROUTOUNIAN: Sometimes it's
mainly -- the main criteria could be, for example, small fiber neuropathy by skin biopsy, normal nerve conduction, and pain. It didn't clearly say that the distribution of the symptoms should be --

FEMALE VOICE: So more likely it was.
DR. HAROUTOUNIAN: We're kind of just going

Page 206
through the inclusion criteria of the studies and extracting this kind of specific information. There was quite a mix in terms of how people define the inclusion. [Inaudible - mic off].

So for guidelines and reviews, again, it's a
separate group of papers, 38 papers. The key
points are, in terms of what different guidelines
recommend for diagnosing small fiber neuropathy,
it's primarily looking at the appropriate
distribution of sensory symptoms, skin biopsy findings in terms of reducing intraepidermal nerve
fiber density, normal nerve conduction, and
abnormal thermal perception. These are kind of the
main recommendations from most of the guidelines.
If we're looking at those clinical studies,
it characterizes patients with small fiber
neuropathy in this pure small fiber neuropathy,
11 studies. I think the main take-home messages
are that mostly it's the distal skin biopsies that
were abnormal in those patients. And this is in
73 percent of those studies In terms of proximal skin biopsies, there are much fewer data.

These are the percentages that use nerve
conduction. About three-fourths, the results were
3 as expected. In terms of cold detection and warm
4 detection testing, you can see that more than half
5 of the studies confirmed that there were
6 differences between SFN and healthy controls, but
7 it's not straightforward, clear-cut that you can
8 find that there are warm detection or cold
9 detection differences.
DR. FREEMAN: Can you clarify something for me? And that is, these were the pure idiopathic small fiber neuropathy, and 3 out of 4 had nerve conduction abnormalities, so 25 percent didn't, and vibration detection, one-third did not.

What I'm confused about is these are
obviously launched fiber modalities, whether the result was unexpected. How did they use that information? Because some would say -- not all, but some would say that that is no longer pure.

DR. HAROUTOUNIAN: So the inclusion -- these
are studies that characterize those patients, so in
terms of inclusion criteria, they say we're

Page 208

1 enrolling patients that have idiopathic small fiber
2 neuropathy with certain criteria and no other known
3 causes of neuropathy. But the extent to which they
4 tested that this is indeed idiopathic and indeed
5 small fiber, quite differs from the studies.
6 So not all of them used vibration detection to exclude patients.

8 DR. FREEMAN: I see. So it's not that they
9 did that in a population they were then excluded,
10 but these were included in that --
11 DR. HAROUTOUNIAN: Were included as
12 idiopathic small fiber neuropathy, but the
3 findings --
14 DR. FREEMAN: Were as they were.
DR. HAROUTOUNIAN: -- was QST, et cetera.
And you can see. Among the 11 studies, only 4 have
done vibration detection, right? Only 5 had done
8 warm detection, only 8 have done cold detection.
19 I mean, we would love them to all those, but
20 it's just some of the data are not there.
DR. UCEYLER: Maybe just a comment on this
question. So with the nerve conduction, velocity,

I think it doesn't matter of definition, also how
in these studies normal was defined. According to
Lacoma [ph] and Stewart, I think marginally
abnormal conduction studies will not exclude small fiber neuropathy.
6 Another aspect -- I will present data on this tomorrow -- a very interesting finding, I think -- what we see also in others, large fiber neuropathy should be excluded. So we do the clinical examination. We do the nerve conduction studies. This is all normal.

Interestingly, when we do QST, we do find mechanical detection threshold changes in these patients, which we do not understand. But we see this in several studies, and other people also do see this. So we have to think about that. As I said, I will show some data on this. Large fiber or what actually do these fibers sense, this is another question.

DR. HAROUTOUNIAN: And I don't know about the association between NCV findings and mechanical detection threshold, how consistent they are and

Page 210
what's the kind of specificity.
DR. HERRMANN: I think your review
highlights one thing. All of these studies use
somewhat different inclusion criteria for the
patient of suspected small fiber neuropathy that's
included. And then one of the problems with
understanding what the diagnostic yield is of cold
detection threshold or skin biopsy is this concept
of incorporation bias.
So many of the tests you're looking at are incorporated in your inclusion criteria for the study. So I think that's just the challenge that you have to face when you interpret data, at least diagnostic yield for any of these tests, is just to understand the limitations when the test is actually part of the inclusion criteria, like pinprick, well, some studies require it to be abnormal; some don't.

DR. HAROUTOUNIAN: Those are the methodologies. Some use just a safety pin, but others use Von Frey filaments; others use the MRC German Neuropathic Pain Network weighted pins.

1 Actually summarizing these findings was
2 extremely hard because of the heterogeneity of the
3 approaches and methods that people use. So even
4 lumping them into as many categories might do some
5 disservice to some high-quality studies versus
6 highlight some of the findings of the lower-quote
7 studies.
8 DR. LAURIA: The problem is actually the
9 lack of a gold standard. Right? So the point is
10 that if you don't have one, you don't know -
11 DR. HERRMANN: You have to used -
12 DR. LAURIA: -- anyone to find the gains [indiscernible]. That's the reason why at the time, we decided that -- since there isn't anyone, we decided to combine some.

That's in any case, a big issue because this
creates an intrinsic limitation that cannot be overcome unless we define that something is the gold standard.

DR. SMITH: The other issue is there's a Bayesian problem here too. It's one of my concerns about how nerve conduction studies are used. In a

1 low population prevalence, they work very well.
2 The negative predictive value is quite high. But
3 if you look at a population prevalence where in
4 diabetes, half of patients have neuropathy, the
5 negative predictive value is terrible. And this is
6 compounded by the fact that it's not clear what
gold standard one would use to make those kinds of
8 comparisons.
9 DR. HAROUTOUNIAN: I think maybe the best
10 example of the gold standard is the skin biopsies
because before the EFNS guidelines on taking skin
biopsies, if you look at the heterogeneity on how
people have taken and analyzed biopsies,
3 millimeter, versus 4 millimeter, versus doing
30 micron cuts, versus 40 , versus 50 , versus 60 ,
what to fixate in, what kind of anti -- there was a
huge variability, but actually in the past seven or
eight years, skin biopsy findings have been
somewhat more consistent where people have followed 0 the guidelines.
21 So I think it is possible with data to
22 convince users or researchers to use more universal

## or accepted techniques for assessing those things. <br> Basically, the last part is the findings among those mixed small fiber neuropathy studies. <br> And I think, again, there were some things that were expected, some that were not. But again, distal skin biopsy seemed to be the most consistent finding, separating SFN patients and healthy volunteers. And smaller percentages, CCM, but at least the studies were pretty consistent. Again, I don't know whether there's publication bias because there's only small amount, And EMG doesn't seem to be very convincing. <br> In terms of nerve conduction velocity, most of the studies in this group at least work kind of as expected. A cold detection was not very specific. A warm detection was a little bit better maybe. But we can see that the pain parameters or psychophysical measures of pain, so heat pain and cold pain performed terribly in terms of separating healthy controls from small fiber neuropathy patients. Maybe it gives us a sense about the cognitive or cortical measures that are involved in

Page 214
the response or psychophysical response that
includes pain rather than just objective
neurophysiological measure.
Pinprick performed pretty. And those two parameters, the contact heat evoke potentials, laser evoke potential, histamine flare, were all in the same direction but like CCM. I think there were just a small amount of studies, and we need to
look a little bit more into those, but maybe they
have an important value in separating patients with
small fiber neuropathy controls.
I want to thank my group, in particular
Mathias Leinders, who did most of the work on this
study. Although he's a Borussia Dortmund fan, I
think he's still did a reasonable job on this. And
thanks for your attention.
(Applause.)
DR. DWORKIN: Why don't we take just two questions, if there are two questions for Simon, and save the rest for the discussion.

Are there two questions?
DR. FREEMAN: While people are thinking of

1 the two questions -- this is not a question. But
2 anybody who has papers that you feel should have
been included, you know the systematic reviews are
4 like. One typo can ruin your study.
5 So if there was anything that he presented
6 that you thought a specific paper that belongs to
7 you, your friends, your enemies, please let him
8 know because that's quite critical to this.
9 DR. HAROUTOUNIAN: Thank you for this 10 comment, Roy.

11 DR. DWORKIN: A couple of questions? We'll have lots more time later. Thanks, Simon.

It's a great pleasure to introduce our next speaker, Gordon Smith, who just very recently
became chair of neurology at Virginia Commonwealth
University. Congratulations, Gordon.
(Applause.)
DR. DWORKIN: And Gordon will be talking
19 about solutions and inclusion criteria
0 [inaudible - off mic].
21 Presentation - Gordon Smith
22 DR. SMITH: And now that I'm a chair, I just

Page 216

1 want to be overt, and I'm going to try and take
2 your money and recruit your colleagues.
3 (Laughter.)
4 DR. SMITH: This is downtown Richmond.
5 I too am not sure whether I should thank Roy
6 and curse him. I liked Rob's introduction. I
7 think a bit of both.
8 Everything l've said, and actually most of
9 the slides I'm going to show you, you've already
10 seen, which begs the question why I'm giving the
11 talk. And I think what I hope to achieve in this
12 is to look at the same data, much of which we
13 examined this morning, but look at it from a
4 different perspective.
15 I actually have this perspective, where as
16 many of you know, we're in the process of just
7 getting off the ground the first large scale
18 clinical trial for idiopathic neuropathy. And it's
19 not focused purely on small fiber neuropathy, but a
20 lot of the issues that we've been talking about
1 here specific to small fiber neuropathy, we had to
22 think about it in terms of enrollment criteria and
clinical trial design.
So as I go back through some of the data, and some of the slides are new, and my slides I
have to say are much more colorful than some of my
colleagues, just think of them from the perspective
of an individual trying to design a clinical trial
for idiopathic small fiber neuropathy. And these
are my disclosures, none of which are really
germane to this.
First -- and it's a new slide -- I want to quibble a little bit with the term "idiopathic neuropathy." I had a patient once tell me you must be an idiot because you can't figure out my neuropathy, which I thought was sort of creative.
But beyond that, I think it's a very vague term,
and it leads us down -- I like the quicksand
metaphor that someone used in terms of IVIG.
There are lots of things that can be an idiopathic neuropathy, a patient who has unexplained distal lower motor neurons syndrome. Is that an idiopathic neuropathy?
Non-length-dependent idiopathic neuropathy. So I

Page 218
think the terminology needs to be a little more
precise. Anne Louise I think talked about this.
These are the terms that are commonly used in the literature, which is idiopathic neuropathy, chronic idiopathic axonal neuropathy, Rick Barohn's term, CSPN, which is the term I actually have grown to like because it really describes the phenotype.
And I'm going to use it I think fairly consistently
in this talk.
But I think it's something we ought to be
thinking about. Do we really want to call
idiopathic neuropathy idiopathic neuropathy, or
should it be cryptogenic small fiber sensory
neuropathy? And the other attraction of that is
Bob Dworkin would like it because it can be CSPN
with two S's.
(Laughter.)
DR. SMITH: And I think you need to give
Francis a call and let him know he needs an
additional letter to really juice up the acronym.
So the initial publication about CSPN, I
think almost 20 years ago. I don't know if, Todd,

1 you're on here. But essentially, it examined a
2 group of a hundred individuals who I think most of
3 us would agree had cryptogenic or idiopathic
4 neuropathy. They had three months of symptoms, and
5 all of these various tests were normal.
6 So this isn't going to be useful in terms of
7 what tests are going to define idiopathic or
8 non-idiopathic. I think it is useful in terms of
9 thinking about the clinical phenotype. So what
10 they found in this cohort was that 62 percent of
11 individuals had sensory loss, numbness, or tingling
12 with pain. Another 24 percent had numbness or
13 tingling without pain; 10 percent pain alone. This
14 is the primary presenting symptom. And there were
15 a small number of people who presented with ataxia
16 or tremor.
17 This actually shows us a bit about the
18 distribution of these various sensory modalities.
19 For instance, vibration just on clinical
20 examinations -- this wasn't vibration detection
21 threshold necessarily. It was abnormal and
22 something like 85 percent at the toes or feet, but

Page 220

1 was not abnormal in hardly anyone at the knee, and
2 you can look across modalities.
3 Here are the physiologic tests that were
4 performed. Nerve conduction studies, for instance,
5 sensory nerve conduction studies were abnormal in
677 percent.
7 So I'll let you look at that, and I think
8 this highlights one point that has already come up
9 today, which is that less than 5 percent, and then
10 this cohort had what clinically and physiologically
11 was an isolated small fiber neuropathy. And I
12 suspect we're going to have vigorous discussion
13 about the extent to which a small fiber neuropathy
14 is a distinct disorder as opposed to part of a
15 spectrum. But whatever it is, in this kind of a
16 cross sectional study, it appears to be rather
17 uncommon
18 I did want to talk a little more but
19 epidemiology, but from a different perspective from
20 Rob's. I think the reason for this is that a
21 neuropathy is common as I'll show you in a moment.
22 And a lot of the diseases that caused neuropathy
are common as I think Roy pointed out. So we need
to understand this epidemiology so we can start to
make judgments about which factors are causative,
which factors are risk factors, and then how we
tease this out.
6 So this was a fairly recent review of the
literature, and I have to say I'm glad I didn't
have to look at 4,000 articles to do this; I'm not
a brave person. But this group viewed almost 4,000
articles.
11 Actually the main point I want to make is
not so much the age and sex distribution of
cryptogenic neuropathy, but it's more just the
number of publications. So these aren't just small
fiber neuropathy papers; these are papers about
idiopathic neuropathy. And you can see, for
instance, 2011 to 2015, there were only seven papers.

So this just clearly and I think
quantitatively demonstrates the need for better data on this. And it's striking for such a common disorder. We don't have good natural history data,

## Page 222

and we really don't have good -- we're getting
better in terms of epidemiology, but we really
don't have a lot of evidence.
This is from the Dutch group and there are
two papers I want to talk about here. This is
another sort of analysis of the literature, and
this shows the algorithm through which they went to
examine about 30 studies of neuropathy to look at
the epidemiology. Within the literature, the
population prevalence, which is certainly an
underestimate, was only 1 percent rising to
7 percent in the elderly, more common in western
countries, and a slight female predominance in this.

I think what's more useful is the prospective study from the same group, the
Rotterdam study that looked at 1310 participants who had a peripheral neuropathy. I'll show you the prevalence in a moment. You can just read through this, but it's very striking with age.

Amongst this group -- and keep in mind these are just patients with all-comer neuropathy.

1 Almost half had idiopathic neuropathy and about
230 percent had diabetic neuropathy. But what's
3 interesting is over half of the cases that they
4 came across were newly reported, which would
5 suggest that the actual prevalence is perhaps
6 higher.
7 These individuals are screened for vitamin deficiencies, thyroid, gammopathy, et cetera,
9 et cetera, and l'll show you the distribution of 10 abnormalities. So this is looking at it
11 differently than Rob did. Rob showed how many
2 people with leprosy have neuropathy, and this will
3 be turning it around the other way.
14 So this is a figure showing the prevalence 15 of definite neuropathy, a probable or definite or 6 possible probable or indefinite by decile. So for 7 instance, by age 80, something like 12 percent of 8 people have definite neuropathy, 30 percent have probable, indefinite, and so on. The categorization was really based on a panel review of individual cases, definite by-in-large required nerve conduction study abnormalities. They

Page 224
1 actually accepted a clinical diagnoses of definite 2 neuropathy.
3 So I think the two points here are that
4 neuropathy's common and it increases dramatically
5 with age. And I think this is important in trying
6 to tie individual laboratory abnormalities. Given
7 the frequency with which people in the United
8 States have diabetes and the frequency with which
9 we have prediabetes and metabolic syndrome,
10 particularly as we age, and the frequency with
11 which we have neuropathy, really confounds our
12 ability in an individual patient to determine
13 whether or not these individual risk factors are
4 disease causing or not, which has implications for
how we define the boundaries of idiopathic
neuropathy.
These are the laboratory testing data from
18 the same group, and you'll see these are patients
19 who had an existing diagnosis and new diagnosis and
20 an aggregate. So for instance, chronic idiopathic
21 axonal neuropathy, 46 percent.
22 I mean, this isn't saying for instance, that
in the 7 percent who had thyroid dysfunction is
causing neuropathy. But what it does show is that
the prevalence of many of the things that we
routinely test for in patients who we suspect have
just a distal symmetric length-dependent axonal
polyneuropathy are infrequent and likely not that
much more frequent than in the general population.
8 You can look through these. The big
9 players, of course, are diabetes, vitamin
deficiency, and individuals who have immune disorders, and l'll talk more about that and show
some of the work that many of the people in the room have done.

This is data that Rob was referring to that we published now almost 15 years ago. This is a group of about 140 individuals who are gathered prospectively, and for each test, this is the percent of individuals who had that test, and this is a busy academic neuromuscular clinic, and this is the frequency with which those tests were abnormal.

For instance, 81 percent of people had a

Page 226

TSH, and out of 140 people there wasn't a single abnormality. What you'll notice is that measures of glucose metabolism are the most common abnormalities and everything else really is no more frequently abnormal than one would expect in the general population in this group. So 3 percent had an abnormal ANA. I think it's about 12 percent of blood donors have an abnormal ANA, so that's
clearly less frequent than one would see there.
The frequency of monoclonal gammopathy was quite low.

So I think it's these kind of data, the perception of these kind of data, that lead to the consensus criteria that I'll show later in terms of diagnostic evaluation for patients with neuropathy.

One vitamin that seems to get a lot of
attention certainly in our clinical practice is a pyridoxine. I don't know what it's like in Virginia, but Utahans love vitamin supplements, so we're always on the hunt for people who are using too much vitamin B6, usually because they're taking multiple multivitamins. And we'll often test this

1 and find someone whose level is high and go, aha,
2 this may be important.
3 This was actually a really nice paper where
4 it was fairly significant numbers, 245 patients
5 with neuropathy without ataxia, 33 with ataxia, a
6 sensory motor neuropathy, 133 and 140 controls.
7 And turns out there's no difference in pyridoxine
8 levels across these populations. And there are a
9 number of people, again, across these populations
10 that have high B6 levels.
11 So no one's really talked about B6, but I
12 think it's a good example of the value of looking
13 at good data in informing your thinking because
14 without this, I think our biases to look at the
5 person who has sensory motor neuropathy and an
elevated B6 and think, okay, this may be
meaningful; whereas in this data, I'm less clear whether it is.

This isn't to say that someone who's taking
megadoses and gets a non-length-dependent ataxic
neuropathy doesn't have pyridoxine toxicity, but
22 one needs to be cautious in interpreting these data

Page 228
1 in individuals with a distal symmetric
2 polyneuropathy.
3 There are a couple of papers, one of which
4 has been referenced explicitly in another. I think
5 Henry has referenced, circumferentially perhaps,
6 about idiopathic small fiber neuropathy. So I just
7 want to go through these because they're perhaps
8 most directly germane to today's conversation.
9 Anne Louise's study involved 213 patients
10 who had small fiber neuropathy based on skin
11 biopsy, autonomic testing, or nerve biopsy. What
12 they did -- and this is a busy slide, but I can
13 walk you through it -- they did a very
14 comprehensive laboratory evaluation as you can see
15 here, and then compared the frequency of
16 abnormalities to publish a prevalence of
17 abnormalities within that particular test. And
18 then those who are I think green, there was a
19 significant increase in risk in patients who had
20 idiopathic small fiber neuropathy. So for
21 instance, 4 percent had hyperthyroidism, whereas
22 the population prevalence in NHANES was 0.5
percent.
So you can peruse this. You'll see a few surprising things, which is that diabetes didn't float to the top. Now, a lot of these data are obviously susceptible to referral biases and whatnot, both in negative and positive ways. But you'll see that there are a number of measures of auto immunity that are overrepresented in this population compared to the published population. Now whether or not they are really more common than they would be in another wise matched similarly referral bias population, we don't know.

So for instance, complement levels were abnormal in 11 percent, whereas only 3 percent in a published a study. So take these data for what they are, but they I think show some of the complexity. And we can really cross-reference this with Karin and Ingemar's study that was talked about earlier and Rob showed.

This is a paper that was just published involving 921 patients with pure small fiber neuropathy. And I think for a study of this size,

## Page 230

1 population has some referral bias. We heard
2 earlier this morning they don't see a lot of
3 patients who have diabetes. And if you go to Eva's
4 clinic, we already heard that most of her patients
5 have metabolic syndrome and prediabetes.
6 The most common abnormalities are similar to
7 those from the other papers that we've talked
8 about, so B12 deficiency, diabetes, and
9 prediabetes, although less frequent than what we 10 might expect was common. Sodium channels, sequence

11 variants were common. And then auto immune
12 disorders, keeping in mind, though, this is an
3 aggregate of a whole bunch of different auto immune
14 disorders, so sarcoidosis, Sjogren's, celiac, and 15 other.
16 Sod does a 0.5 percent prevalence of celiac
17 disease really represent a higher number than the
18 normal population? I don't know. Those with a
19 known risk factor -- and this goes to I think
20 Todd's point about people having multiple different
21 risks leading to a common phenotype -- over a
22 quarter had more than one risk factor, so B12

1 deficiency and alcohol use. So trying to identify
2 what's causing the neuropathy in any individual
3 patient can be quite challenging.
4 We've already talked about this and the
5 registry, so I'm just going to skip over that. I
6 did want to talk about this study, which is a
7 little bit far afield, but I think perhaps is a
8 call for common sense in terms of how we think
9 about genetic neuropathies.
10 This is a study that over about 100 patients
11 who were suspected to have a hereditary neuropathy
12 underwent an almost 200-gene next-generation panel.
13 The first point is there were 6 patients with
14 chronic idiopathic axonal polyneuropathy included,
15 which is intriguing to me why they did, but none of
16 these patients had any disease-causing mutations or 7 variants of unknown significance, so small number.
18 Well, what's interesting, even in people who
19 one is suspecting phenotypically have a hereditary
20 neuropathy, what's clear is if the age of onset was
21 over 40 and there was no family history, even with
22 the suggestive phenotype, the likelihood of finding
something on genetic testing was 5 percent, whereas
those less than 40 with family history, 33 percent.
I think Karin commented on this earlier, is
that one needs to think about the sodium channel,
the narrative, and really the whole issue of genetics and small fiber neuropathy with clinical common sense and phenotype and family history.

So just because Ahmet has access to
\$100-exomes that insurance companies uniformly
cover, it doesn't obviate the need for him to exercise a good clinical judgment, which I know he does on a daily basis. I'm just going to start saying in my referrals, I'm from Johns Hopkins, and I'm sure it'll get covered now.

The next thing I want to delve into -- and I
can go through this fairly quickly -- is thinking
about the intersection between metabolic syndrome, obesity, prediabetes, and neuropathy. There are
two reasons to do this. One is I'm kind of a
one-trick pony, so if I were to show you my
vacation slides, l'd still talk a little bit about
this.

Page 234
Again, I want to cover it again fairly quickly because I just want to think about it and flip it around. And don't think about it as
whether or not this is a meaningful cause for neuropathy, but how would you integrate this and your thinking about designing a clinical trial for idiopathic painful small fiber neuropathy.

The first study I want to talk about is a
very carefully done study by Richard Hughes that
I'm sure most of you are familiar with where they
recruited 50 patients and controls from the same
region and did a thorough evaluation. And what
they found is in a monovariant analysis, those who
had painful neuropathy were more likely to have an
abnormal glucose tolerance tests, more likely to
have abnormal serum triglycerides in fasting
insulin. But in the multivariate analysis, the
only thing that percolated to the top was
hypertriglyceridemia.
There aren't very many studies that were this careful, and I'll quickly go through many of the same slides that Rob did that I think

1 convincingly demonstrate a relationship between
2 prediabetes, metabolic syndrome, obesity, and
3 axonal neuropathy. I think one needs to be cautious
4 about attributing, again, an individual patient
5 causation with these, and these were probably maybe
6 potent risk factors.
7 I think the first point -- and this is an
8 old slide -- there are over 90 million, probably
9100 million Americans now, with prediabetes. About
01 in 3 adults has prediabetes. So again, if you're
going to do a study of idiopathic small fiber
sensory neuropathy and you're going to exclude all
patients who have prediabetes, you have to ask
yourself what that does to your enrollment and does
that actually make any sense whatsoever?
This is one of more colorful slides. This is the slide that Rob talked about. In the core study, Dan Ziegler's study, there's an increasing
prevalence of neuropathy with increasing severity
of glucose dysregulation and particular painful neuropathy.

I think one thing to keep in mind, though,

Page 236
7.4 percent of the control population had

2 neuropathy and 1.2 percent had painful neuropathy.
3 So again, from a clinical trial perspective, keep
4 that in mind.
5 I'm going to skip over that. I'm going to
6 skip over that. and I want to come to this slide,
7 which Rob also showed a, which is the data
8 comparing a prevalence of metabolic syndrome and
9 chronic idiopathic axonal neuropathy, and painful
10 chronic idiopathic axonal neuropathy compared to
11 control, so a convincing increase in the prevalence
12 of metabolic syndrome, yet it's still quite high in
13 the control population.
14 We'll skip over that as well
15 This is data from our bariatric surgery
16 cohort in Utah to emphasize the frequency with
which morbidly obese individuals who are candidates
for bariatric surgery have subtle abnormalities of neurological examination and also the presence of neurological or neuropathy symptoms.

So this is the prevalence of an abnormal UENS and the bariatric candidates and controls and
an MNSI greater than 2, which isn't really a cutoff
threshold for neuropathy. But if you look at the
distribution here, there are a fair number of
people who have strikingly high UENS scores. And
these are patients who just clinically didn't seem
to have neuropathy. So we specifically did not use
these scores to categorize patients, neuropathy or not.

This is another one of Rob's slides from Brian's study, the Health ABC study, showing normal glycemia, prediabetes, diabetes, prevalence of neuropathy relative to how many metabolic syndrome criteria are fulfilled. I think what I want to point out is while this is higher than this, and that's probably statistically significant, this is still a high number, and we need to factor that into our thinking and then designing clinical trials.

I'm going to skip through these slides just because I wanted to make the same point that Rob already made, that I think there's pretty good evidence now that strategies intended to address

Page 238
the metabolic abnormalities that l've been
discussing seem to have benefit in terms of
epidermal nerve fiber density and also symptoms of
painful peripheral neuropathy, so we're going to
skip over that.
This is the current guidelines for diagnostic evaluation of patients with peripheral neuropathy. This is quite old now, I think, nine years old. They felt that there was level A evidence for the utility of genetic testing and suspected hereditary neuropathy.

I think that the evidence probably remains
the same, that there's insufficient evidence to
determine usefulness in cryptogenic neuropathy.
And as you're well aware, the recommendations are
for vitamin B12 metabolite testing, paraprotein
evaluation, and a workup for diabetes and prediabetes.

We don't have a revised set of a practice parameter from the ANN yet. This is just a nice continuum article, which is where I go for clinical common sense, and, Wow, this looks like a long

1 list. It really captures in the literature review,
2 the same theme that came out of John England's
paper here, which is the need to look for
4 vitamin B12 paraproteinemia, and diabetes.
5 So the question I was asked to address is what to exclude, and that's hard. But I would say
7 that a lot of evaluation for peripheral neuropathy
8 is really based on careful history and examination.
9 This is something that can be challenging in the
10 setting of a multicenter clinical trial and how you
craft this in your enrollment criteria.
All patients with a suspected axonal neuropathy or axonal neuropathy suspected CSPN have
to have these laboratory tests I talk about. And
then depending on the individual's risk factors,
the region in which you're practicing, and so
forth, there may be other tests that one might need to do.

So I think to say that every patient who has a length-dependent axonal sensory motor neuropathy needs serological testing for hepatitis $C$ is probably not true, but there certainly are areas

Page 240
1 and practices and referral bases where that's
2 something that you do need to do.
3 I would posit that clinical trial enrollment
4 may require more explicit evaluation than that
5 which we use clinically, and we may want to tailor
6 the enrollment criteria regarding definition of
7 cryptogenic or idiopathic neuropathy based on the
8 mechanism of the agent which we're using. And I'll
9 show you how we did this in our trial in a moment.
10 I think at this point -- and this may be the
11 most controversial thing I say -- is that routine
12 genetic and immunologic testing and suspected CSPN
13 is a low diagnostic yield, and one doesn't know
14 what to make of subtle abnormalities. So a patient
15 who doesn't have other evidence of an autoimmune
16 disorder, unless there's a red flag -- and I think
17 Todd captured this in his talk, and I kind of poked 18 fun at the immunization thing.
19 But if there's something in the phenotype
20 that suggests autoimmunity, then clearly a more
21 careful evaluation is necessary. But in the
22 absence of a family history or other phenotypic
suggestions that the patient might have a sodium
channel mutation, at this point, routine screening is probably not useful.

There's a quote from an epidemiology article
earlier that I really liked that I thought I'd put
on a slide because I think it really captures the issue, and I'll actually read it.
"Since polyneuropathy probably is a
multifactorial disease, it's not entirely
appropriate to attribute the development of polyneuropathy to only one factor. These factors should be considered as proponent causes and not as one sufficient cause." And I think several people have made that point today, and I think it's the challenge in determining what's idiopathic and what's not idiopathic.

This is a trial. And I'll just tell you how we approach this. And this, again, is not a small fiber neuropathy trial, although patients with small fiber neuropathy can be included. This is a study of topiramate as a disease-modifying therapy for CSPN. And the idea behind this is that

Page 242
topiramate, as you know, causes weight loss and
improves insulin sensitivity. It is a sodium
channel blocker, which suggests another potential
mechanism.
There are a data suggesting that get to
Rob's question about epigenetics, that at least in
diabetes models, abnormal sodium channel function
not only can contribute to neuropathy phenotype,
but can then subsequently lead via effects in terms
10 of calcium homeostasis and others to axonal
11 degeneration; so another potential mechanism for 2 this messy drug.
13 So the way we handled this was because the 14 intent was to impact metabolism in this population,
15 we only included patients who had metabolic
16 syndrome. And in fact, so we're only including patients who are overweight or obese. And the idea here is to try to narrow the population into those who have metabolic syndrome as a risk factor, a major risk factor, for their neuropathy, not arguing that it is positive and to weed out some of those patients who might have other causes, genetic
causes and so forth.
2 We obviously needed to exclude other causes of neuropathy, and we did this in two different

4 ways. One was to try to capture clinical judgment,
5 any identified alternative cause of peripheral
6 neuropathy and not limited to -- and
7 [indiscernible] examples. So we didn't require
8 everyone to get hepatitis B or C, but we asked
9 investigators to use their common sense and
10 thinking about these things. This has already
engendered a few calls with good questions that I'm
happy to share with you; what do we do about this individual patient?

We felt it important to do testing for the guideline -- mandated is too strong a word, but the tests that are suggested by John England's paper. So everyone gets a B12 SPEP immunofixation actually they're only getting an immunofixation. Actually, they're only getting immunofixation in the study and an oral glucose tolerance test, which is in part to exclude diabetes and in part is just an endpoint of the trial; no family history, no
history of alcohol and drug abuse.
We are biobanking, and I think that's
something that we ought to be doing in these
4 studies. It's low-hanging fruit. So here we're
5 just gathering DNA and banking it with the idea
6 that we'll be able to go back and then look at
7 sodium channel sequence variance. If there's an
8 effect, we can look at whether or not any of these
9 sequence variants or polymorphisms seem to predict
10 treatment response, which is somewhat a different
11 question as to whether or not these are risk factors for neuropathy.

So that's kind of how we dealt with it, but
one can easily see Todd or Anne Louise doing a
15 study of some sort of immune immunomodulatory
16 therapy in patients with idiopathic small fiber
7 neuropathy that they think have a greater
18 likelihood of having autoimmune mechanisms and
19 constraining the population based on serologic
20 testing or other clinical features that would be
21 fit with their concept.
22
So that's it. I don't know if that's what

```
    you're looking for, Roy, but I think I saved a
    little bit of time, so that's good.
    DR. DWORKIN: Questions for Gordon.
    DR. OAKLANDER: Great talk, Gordon. With
    everything [inaudible - off mic].
    DR. SMITH: Can we stop there?
    (Laughter.)
    DR. OAKLANDER: Also factor into our
    recommendations diagnostic testing. And I think
    you already - [inaudible - off mic].testing kids
    and what you need to look for in kids is fairly
    different; not entirely different [inaudible]. And
    then number 3 is the cost of the test as well as
    the diagnostic yield.
    DR. SMITH: I agree with everything you
    said.
    (Laughter.)
    DR. LEVINE: Just to follow up on what Anne
    Louise said, if the goal is to try to define an
    idiopathic group, my thought and listening to you
    talk there was also limiting age, but in the other
    direction.
```

Page 246
1 So you see the curve really start to increase at 60. So if you're trying match the natural history of a disease, defining the age group as a younger population of patients -- I mean
normally we cut off $75-80$, but then we're talking
about 20,30 percent of the patients that will have
it through whatever that disease course, just
natural aging as opposed to taking 20 to
60 year olds where the difference may be much easier to see.

I was just wondering what your thoughts were on that. I know we don't usually set the cutoff that low, but it seemed like it might be a logical thing to think about.

DR. SMITH: I'm just going to go. I think I mentioned -- and what other people think of that.
I think it's a very sensible suggestion. We
certainly see patients who have -- I'm just
thinking of the diabetes world, and you'll now see
patients who have obesity and type 2 diabetes in their late teens and early twenties who may have neuropathy. But I agree that if I see a

1 25-year-old person who has a small fiber
2 neuropathy, my antenna go up.
3 I don't know that we've got good data on
4 what that means, but I agree it's a sensible thing.
5 DR. LEVINE: I agree with you exactly. See,
6 there's the curve. It starts to go up at 60, but I
7 think all of us feel differently when you see a
825 year old with a neuropathy than when you see a
975 year old with neuropathy.
10 DR. SMITH: This curve starts at 50.
11 DR. FREEMAN: Can I --
12 MALE VOICE: Last question.
13 DR. FREEMAN: Can I do that? Thank you.
14 A couple of questions. That was, as always,
15 a terrific talk. I want to focus the discussion a
16 little on the major reason we're here, and that is
17 the clinical trial. And obviously a clinical trial
18 is a little difference to clinical practice. And
9 you made a statement on one of your slides about
20 clinical trials may be a little different or words
21 to that effect. And I think clinical trials are 22 very different.

1 So two points. The one is that we are
2 beginning to, I think, develop the concept that
3 small fiber neuropathy, axonal peripheral
4 neuropathy has multiple potential factors that may
5 work in conjunction and that many of the factors
6 also have a very high prevalence in the population,
7 and in a particular subject may or may not be the
8 causative factor or even one of the component
9 causes.
10 So with that in mind -- and you have a
11 clinical trial that's ongoing, and a number of
12 people in the audience, including some from pharma,
13 are beginning to develop clinical trials. We need
14 to be fairly explicit about what is acceptable and
15 what is not acceptable and what to look for and
16 what not to look for. And this applies, one, to
7 the screening tests for inclusion and exclusion;
8 and also, as I'm becoming increasingly aware of,
19 treated potential abnormalities like treated
0 thyroid disease, or treated B12 deficiency, or
elevated methylmalonic acid or homocysteine levels.
So this is a very broad question, but we're
going we need to be fairly explicit by the end of the day and certainly at the time of paper writing.
Elaborate a little on what do you think is
obligatory in a clinical trial, must be done at must be normal?

DR. SMITH: This issue is one of the things that has come up, and l'll give you an example.
There's a participant at one of our sites who had celiac disease, had been treated. Their antibodies were undetectable. Their neuropathy started some time after that celiac disease.

I'm setting up a strawman, but we decided that patient was fine to screen because clinical common sense would dictate a neuropathy that started years after a successful treatment for celiac disease that was in remission essentially at this point was appropriate.

On the other extreme, we aren't allowing people -- and I think it would be imprudent to allow people into a clinical trial obviously who have diabetes and neuropathy, or who have a new diagnosis of vitamin B12. The way we're dealing

Page 250
with this in another trial we have ongoing right
now is patients with diabetic neuropathy trial.
Patients who are B12 deficient, we're allowing
treatment and rescreening, a bit of a messy
solution, but this is a lifestyle based study. So
I think part of it may depend on the particulars of the trial.

That's sort of a really vague answer and an intentionally vague answer because I agree with what you're saying.

DR. FREEMAN: So there's a lot of agreement all around. Maybe just a follow-up question. One of the critical questions with all of these trials, impaired glucose tolerance. A lot of people in the audience, pharma, are doing trials on small fiber neuropathy. Do they need to do an oral glucose tolerance test? You said 1 in 3 people in the United States has impaired glucose tolerance.

How do we deal with that inflammation in a clinical trial?

DR. SMITH: I think it depends on the idea behind the clinical trial, the agent's hypothesis.

1 So in a trial where we are specifically targeting
2 metabolism, we want to know what the glucose
3 tolerance looks like as a marker of the underlying
4 physiology which are addressing.
5 I think I kind of think of this in the same
6 way I think of blood pressure and stroke, and I
7 think we may learn a lot from thinking about other
8 multifactorial, complicated conditions with very
9 clear, very potent risk factors. So I think of 10 prediabetes in the same way, is poorly controlled

1 blood pressure to stroke as it is to neuropathy. So
12 if one's doing a stroke trial, you measure the
3 blood pressure, but it doesn't necessarily mean
4 you're going to do something different with it.
15 So I think my advice would be for a
16 idiopathic small fiber neuropathy study, I would
7 not frankly look at oral glucose tolerance tests 8 unless there was some very compelling reason to
19 exclude patients who had very mild diabetes. I
20 would probably do a standard diabetes screen and
1 not look at it. I don't see the reason one would.
22 On the other hand, I've already given the example,

1 where we're doing something to intervene with
2 prediabetes, we of course want to know if that's
3 successful.
$4 \quad$ But I think the idea that in many of the
5 things that we're measuring now, and this is
6 probably true for the autoimmune markers, to the
extent that they're relevant, they're probably
8 not -- and I think it's true in this population for
9 many of the sodium channel variants. If they're 10 relevant, they're probably relevant to the same sort of way prediabetes is, as a risk determinant rather than the primary cause. So that's my bias.

DR. DWORKIN: So let's carry on so we can get coffee. Thanks, Gordon.

Our next speaker is Dr. Chris Gibbons who is
16 an associate professor of neurology at Harvard
Medical School, and he's going to be talking about
diagnostic instruments used [inaudible - off mic]
19 of cryptogenic sensory polyneuropathy.
Presentation - Christopher Gibbons
DR. GIBBONS: So again, another dubious 22 lecture that I'm slightly honored and slightly
chagrined to present. I don't want to start with a
number of disclosures. I think this is possibly the
most boring topic on the item list, so that is a problem. I intentionally try to be a bit provocative, so I hope you don't mind if I take some liberties.

I don't in fact have a small fiber
neuropathy instrument named after me; still trying
but I haven't gotten there. But I'm actually not
developing one either, so if anyone wants to give me one, that's also fantastic. But in terms of disclosures, I don't really have any relevant to the talk, but I do want to highlight that as I go through this, that, again, this is a challenging topic, and we sort of hit on a lot of details already.

So in terms of what I'm trying to accomplish, at least during the next 4 and a half hours you have with me, is the review of existing patient- and clinician-oriented questionnaires, data that exists at the moment, to really review some of the information. But one of the things,

Page 254
obviously, when you start to dig into the
literature, you can cast a wide net and end up
with, as Simon had noted, 60,000 articles of
dubious relevance to your data set that clearly can
come into the case once you start to branch out into pain or other kind of outcome measures.

So I'm trying to be pretty precise in terms of what I'm including, at least for this
discussion. I want to talk about examination
10 criteria, and then I'm going to compare and contrast some of these, and I'm going to liberally editorialize on this to hopefully make this a somewhat more interesting.

I'm just going to jump right in. Hopefully you can see a little bit, and I'll kind of
highlight what we're talking about. But these are
some questionnaires that have really specifically
been studied in small fiber neuropathy. The survey
of autonomic symptoms, the Maryland group has
published on this. There's the small fiber
neuropathy RODS and SIQ, which are two separate scales we'll talk through.
$1 \quad$ Here we have small fiber peripheral
2 neuropathy from the MGH group. there's the NTSS-6,
3 which many of you are familiar with. It's older.
4 It's not specific for small fiber neuropathy but
5 has been studied specifically in this.
$6 \quad$ Then some of these were actually validating 7 studies are questionnaires that many of these other
8 have been validated against, so I thought I would
9 just mention them a little bit in terms of what has
10 been done and why we're interested in them. Across
11 the top here, in very small print so that none of
12 you can read this -- I will highlight what we're
3 looking -- a question of what domain. I think this
4 is actually the name Anne Louise had suggested
5 earlier, and I threw this out as well in mine.
16 So what domain are we talking about? Is it
7 a sensory domain? Isn't an autonomic domain? Maybe
18 that's an important question we need to ask.
19 Were these questionnaires physician
20 developed? Were they developed by patients? And
21 then, what are the standard things we think about
22 with validation? Internal consistency,

Page 256

1 test/retest, reliability content, validity, so
2 these important discussions.
3 If you go through, this is a pretty hot
4 topic and I think pretty critical to the overall
5 discussion of where we're going. Some of these
6 really are our autonomic, so the survey of
7 autonomic symptoms, for example, pretty clear where
8 that's leading. Some are a little bit more
9 sensory, the NTSS-8, or example.
10 Some cover both. So I have some question
11 marks here with a small fiber neuropathy RODS,
12 which is a disability based scale on small fiber
13 neuropathy. It's not really a symptom assessment
14 as much as a disability assessment.
15 I think these are pretty critical issues.
16 First of all, whether patients were involved in the
process or not, I think that does change the
8 perspective on what the questionnaire will ask and
19 potentially with your answers will be. So it's an
20 important thing to consider. It's neither right
21 nor wrong, though the FDA does suggest that
22 inclusion.

1 Actually to go back, everybody's included
2 the standard kind of reliability, construct
validity testing almost in everything these days.
So I think everybody hits those marks. So the
differences really are in these categories
primarily and what that means going forward.
One of the ways we ask questions, any
particular questionnaire, and highlight what we do
is, first of all, what have you looked at? Who are
10 you studying and why? So what are the control groups? What are the disease groups? How do you
12 make the diagnosis of small fiber neuropathy? What
13 are exclusion criteria? These are just sort of the
14 basis for all the talks that we heard about earlier.
16 Some include controls prominently; some do 17 not. Some control a specific to disease, either 18 impaired glucose tolerance or newly diagnosed
19 diabetes, some mixed disease, some specific things
20 like sarcoid, so very specific diagnoses that may in fact be very relevantly different across disease states when you're comparing these.

## Page 258

1 Then looking at how we make a diagnosis,
this is pretty critical and this is sort of the
topic of discussion for this whole group, how do we
decide somebody has a small fiber neuropathy and
whether it's truly pure or is it mixed?
Do we include a sign and symptom approach
with one abnormal test? Do we say symptoms? Do we
say multiple symptoms? Do we say either one test
or another abnormal without symptoms? Again, these
10 are pretty important topics that really make a big
difference in terms of outcomes of these studies.
So as you can see, there are differences.
Some people include controls; some people don't.
Some add controls on at later study time points.
The disease will vary between these studies, so
even though we could think of this as a small fiber
neuropathy, it may be small fiber neuropathy in
something as opposed to an idiopathic.
Then finally, really, this question of how
we make the diagnosis. This is pretty critical and
21 I think one of the major topics for discussion as
22 we go forward in this meeting. Then finally, as

1 you just heard from Gordon, what do we exclude and
2 why? And can we justify that going forward and
3 comparing between these tests?
4 I thought l'd highlight some of these
5 surveys. For people who aren't familiar with them,
6 I thought it would just be useful to discuss a
7 little bit about the questionnaires and what we're
8 looking at. This is the survey of autonomic
9 symptoms. It's a 12-questionnaire with kind of two 10 parts.

11 The first is do you have the symptom?
12 Either yes or no, during the last six months. And
3 then the next question is, if you have it, how much
4 does it bother you on a 5-point scale? So it's
5 fairly clear, fairly easy to administer,
1612 questions, and you kind of get these answers.
7 And because these are really, again as noted in the
8 title, autonomic symptoms, you're really focused in
19 on those components. Some are sweating, some are
20 kind of temperature feet, pale or blue, persistent
1 diarrhea, constipation, urinary difficulty,
22 erectile dysfunction, often what we would think of

Page 260

1 as a standard battery of questions for somebody who
2 might be presenting with an autonomic
3 problem.
4 Small fiber neuropathy ROD's questionnaire.
5 This is, again, a Rasch-built disability scales,
6 and this is looking at -- it's a 32-question scale,
7 and as you look at the rating, it says 0 to 2
8 rating. And as you can see, not possible to
9 perform; possible but with some difficulty;
10 possible without any difficulty. So fairly clear
11 in terms of how people complete this, and then the
12 tasks. And these range from brushing your teeth
13 and making coffee or tea, turning a key in a lock,
14 et cetera, going down.
15 So these are the first 12, and l've included
16 the next 15 to 32 here as well. Most of these are
7 straightforward, and some increasingly more
8 difficult. Again, this is a Rasch-built score, so
9 it doesn't, unfortunately, have a standard
2 numerical output, which is one of the challenges.
21 There's this symptom inventory questionnaire
22 here, which is another way to look at small fiber
neuropathy. This is, again, a 13-item
questionnaire with a 4-point scale ranging from
never to always; here are the questions coming
down. And this again hits different domains as we
talk about kind of autonomic sensory. Some include
sweating, diarrhea, constipation, dryness, urination, palpitations, flushed, and then burning
sensation in my feet; cannot stand the sheets on my
legs. My legs are restless during the night. So
again, this one covers a different selection of particular question.

This one is from the MGH group and their questionnaire. It's small Unfortunately, I'm not sure you can read this, but they also have domains focused here. And these are looking at changes in sweating pattern, or mental fatigue, physical fatigue, skin-burning pain; GI related things, public related discomfort, and again, ranging from never to always in terms of the scale.

So this particular, again, questionnaire, you've seen many of these questions have the same distribution in terms of number of questions or

Page 262
options, and then the different domains will vary a little bit in terms of the focus.
The NTSS-6, another one where this is a 6-question scale, however, it's a little bit
different in that it's graded by both frequency and
intensity in a 4-by-4 block. So the frequency goes
from never to continuous and the intensity goes
from not present to severe. So again, it's a 4 by 4
block, which is in fact a little bit more confusing
10 if you're trying to administer this. It's not quite as simple checking across the criteria.

So what are the strengths of these scales?
Well, in all of them, a large number of subjects that have enrolled. Some actually have large numbers of controls as well. So again, for any of these validated scales, I think this is what we sort of establish as a simple basic limitation, and in all cases, these fit this criteria. They're
very well done. There is excellent internal
consistency across almost all of them, excellent
test/retest reliability; content validity, using
many of the previously studied scales again as

1 well.
2 So all of these hit these kinds of fairly 3 high watermarks in terms of how well they've been

4 evaluated. So again, a lot of strengths for each
5 of these. So maybe now I'm going to get into some
6 of the more provocative stuff.
7 Weaknesses. Why do they have weaknesses and 8 what are they, and should we discuss this further?
9 It comes up to the question, how do we know they
10 have a small fiber neuropathy? What is our gold
11 standard? In this case, we have some disagreement
12 between these scales as to what we define small
3 fiber neuropathy going in.
14 Is this defined by an abnormal test result, 15 abnormal symptom, a sign, some combination of the 16 above? I could really imagine very different 17 results coming across depending on how you arranged 8 your criteria for entry.
19 Now, is small fiber neuropathy in a single
20 disease the same thing as small fiber neuropathy in
21 every disease, or idiopathic small fiber
22 neuropathy, or hereditary small fiber neuropathy?

1 I see a lot of diabetes. I see a lot of autonomic
2 neuropathies. Is this the same thing as a diabetic
3 autonomic neuropathy or if it's an idiopathic
4 neuropathy?
5 There are a lot of questions you can
6 ruminate over in this process, and if you're
7 studying a disease, perhaps such a sarcoid, is this
8 actually relevant to any other small fiber
9 neuropathy? So these are questions I think we do 10 have to ask.

11 Even a bigger question, small fiber sensory 12 neuropathies and autonomic neuropathies. Are these
13 the same disease? Yes, no, maybe. It's an
14 interesting question, but I would say that a
15 patient with a severe isolated autonomic neuropathy
16 is not the same as the severe isolated small fiber
17 sensory neuropathy. And maybe there are some
18 similar mechanisms. Maybe there's some similar
19 problem, but I would say from a phenotype there are
20 very different and probably the underlying
21 etiology, if we ultimately discover what it might
22 be would be very different.

It does kind of get to this question for our questionnaire, if it's an autonomic questionnaire, we are looking at the apple, or are we looking at the orange, or are we looking at fruit? Which test are we doing for this particular scenario. and is it appropriate to apply this more broadly?

So do we need to be more specific in our definitions of a small fiber sensory questionnaire, is it a small fiber autonomic questionnaire, or is it a domain-specific questionnaire that we subdivide depending on how the result is put out?
So these are important details that aren't really discussed.

There are other challenges to questionnaires. Not all are publicly available.
Some are actually being developed. And one of the issues, of course, with any particular scale that's in validation, validation is an ongoing process. So maybe the most up-to-date version of the scale isn't available. But if we're going to use this in clinical trials, how do we access this information? How is this available? Can we make it available in

Page 266
the public domain? Are there going to be a few hurdles to acquisition of this? This is a problem.

Some questionnaires can't be analyzed simply. You may need a psychometric analysis to actually get into the detail. And if that's the case, is that a barrier to using this more broadly?

So when we ask this question, I think it's an important one if we're thinking about how to make this information widely available for everyone
10 to use and potentially be consistent.

So this really comes into a big internal

1 conflict bias question that I have, and I sort of
2 ruminate over this probably far more than I should,
3 but do these reflect the patients that I see? So
4 in other words, if I'm using this questionnaire in
5 my patient population, does it mean anything? And
6 I'm going to pick on one questionnaire because I
7 can, and I'm up here, and l've got the mic, so
8 that's what we're going to do.
9 This is the small fiber neuropathy RODS, so
10 this is a disability score. And I find it
11 fascinating because I look at the questionnaire,
12 and l've kind of gone through the questions with my
13 patients and l've wondered about this. So brushing
14 your teeth, making coffee or tea, turning a key in
15 a lock, picking up small objects, kind of going
16 down through the whole list, I see a range of
17 patients with small fiber neuropathy from very
18 mild, a little burning discomfort in the toes, to
19 the very severe, multiple amputations, really
20 significant neuropathy to the point where, again,
21 there are many complications that have been a
22 result.

Page 268
1 I have yet to find anybody who's done
2 anything saying they can do it all. There's nothing
3 on this list they can't do. Maybe somebody will
4 come up with one of these after an amputation and
5 they haven't kind of regained mobility, but
6 everybody signs this as a 2, which means they're
7 normal.
8 I have yet to find any of my own patients
9 with any disability if I look at a scale like this.
10 And is this because my patients that I see are very
11 different than the group that sees this with their
12 population? I would say probably. Many of my
3 patients have predominantly small fiber neuropathy
14 from diabetes or diabetes related complications.
15 Maybe that's a different disease. But if I'm
16 looking at this, and I'm seeing no disability,
7 despite amputations, I sort of see a mismatch.
18 So I struggle with this because it doesn't
19 fit my own perceived bias of what small fiber
20 neuropathy is. I suspect we all have these same
21 perceived biases in what we're looking at, and this
22 is something that maybe as a group we do need a
better job in kind of discussing what it is we
think we're seeing and how it fits to everybody
else's practices and referral basis.
So obviously if you're at a genetic center,
you don't see diabetes. I don't see much in the
way of genetic because I see a ton of diabetes. So
maybe there's just, again, this difference, but
it's important to bring this to the forefront
because I would never use this particular
disability score for my patients; it just wouldn't fit, so it's an ongoing question.

So with that kind of discussion, I'm going to jump from diagnostic questionnaires to diagnostic examinations and kind of discuss that a little bit further.

This is a very busy slide, and Jen Gewandter has done a phenomenal job of putting this together. This is coming from an upcoming paper, but this looks at individual examination scores here. This is neuropathy in general scores, not specific to small fiber neuropathy.

This is looking at muscle strength, reflex

Page 270
testing, vibration touch, joint pinprick. And what
you're seeing here is essentially the distribution
of examination. Is it the full limb in the upper
and lower, or just part of the limb, so just the
distal toes?
So it just sort of gives you an idea of how
much any particular test is measuring. Are you
measuring everything or are you measuring just a
few things?
Over in these columns here, you're seeing the percent of the max score as motor reflex, large
fiber or small fiber. What you do immediately see
is there, again, expected, depending on the type of
score you're interested in, wide variability, up to
90 percent motor or zero percent. So again, big
range in distribution of where the focus of the
score may be.
Of course we're at a small fiber neuropathy meetings, so where are we here? Small fiber neuropathy, generally 20 to 40 percent or less for many of these. The only exception being the Utah
Early Neuropathy score, which is at 60 percent, not

Page 271
1 surprisingly. And again, the distribution, widely
2 variable, but what we're seeing in terms of small
3 fiber focus, that's generally where we are. That
4 would be the highest one, but there are a couple of
5 others in here.
6 So is that relevant to the discussion?
Well, I think it is because obviously if we're
doing detailed muscle strength testing, that's
9 probably unnecessary in an isolated small fiber
10 neuropathy. We don't really want to consider the
1 ones that spent a lot of unnecessary time focusing
2 in on irrelevant details.
13 So kind of highlighting the UENS scale primarily because, first of all, it's publicly 15 available, so it's easy to download. Everybody can
16 get access to it. It is easy to understand. The 7 instructions are simple. It's quite clear. How 8 you rate with a pin kind of distribution on the
19 legs. The motor examination is just great toe
extension, pin sensation, allodynia, hyperesthesia, large fiber sensation. They do look at vibration and great toe joint position, and reflexes at the
ankle.
2 So it's fairly clear how to do this. This
is something that is very helpful if you're
thinking about studies, because obviously clarity
counts. If you can make a, a study easily
6 accessible to a large group in a multicenter trial,
that is helpful. The more complicated an
examination, the more likely you are to get that
9 inherent variability, which makes things a little
10 bit messier to move forward with.
So here's what I'm going to pick on, the
PNRR group, not necessarily in a bad way. But
again, this is the peripheral neuropathy research
registry. This is the examination involving this.
It's a lot more detail. It's got a lot of data
points here. This particular study is looking at
more comprehensive neuropathy, so again, it's
important to consider what is the goal of the study.

This I would say probably isn't appropriate for a small fiber neuropathy study; again, a lot of detail in areas that are not relevant necessarily
to what we imagine a traditional small fiber neuropathy to be. However, it is trying to be adaptive to multiple different types of neuropathy in the same trial, and this is where it is a
strength. It is comprehensive. Even though it's
complicated, it's comprehensive, and it is clear.
It's not difficult to complete. Everybody I think
will be fairly familiar with the approach once they
kind of read through the details.
So it's not a particularly challenging one.
It is more complex in terms of the time and effort,
but it's fairly clear on a standard neurologic exam
what goes where when you review it. Unfortunately,
it's not yet validated or publicly available in
terms of study because it's -- isn't that correct,
it's not yet publicly available?
DR. HOKE: We haven't published it, but hopefully soon.

DR. GIBBONS: So again, it's one of these
that it's in an iterative process, so although
widely used by many centers in this trial, it's not yet something that has widespread availability.

Page 274
So, again, one of the limitations.
This was a study that the Maryland group did
kind of looking at examination scores in early
neuropathy, in this case due to impaired glucose
tolerance, and really looking at some of the
details of whether small fiber function or
structure was in any way related valuably to an examination.

So this is nerve fiber density at the distal leg, the distal thigh, QSART, cold detection thresholds. These numbers are probably hard to read. The $p$-values are all particularly nonsignificant mostly because the correlations were particularly bad.

James, am I summarizing that appropriately?
DR. RUSSELL: Sadly, that's true. I wish it weren't, but it is.

DR. GIBBONS: And I think it's an important point to raise because why? Why would all of these correlations have been so bad? And this is looking at multiple different examinations scores, including the UENS, the NDS, NIS-LL, the modified

1 Toronto, et cetera.
2 So it's a lot of very good validated
3 studies, which raises an important question, and I
4 think we can kind of get into these details. All
5 of the skills were terrible and correlating with
6 tests of either structure or function. The
7 modified Toronto correlated best with the diagnosis
8 of neuropathy.
9 Why? Why do we think it correlated best?
10 Well, because of the inclusion criteria, of course,
11 for this study. Everybody had to have symptoms for
12 less than two years without requiring any science.
13 The modified Toronto is the only scale that asked
14 questions of symptoms. There were no signs
5 required for this, which meant it was probably
16 either extremely earlier, essentially, from a
7 pathology or functional point, probably proceeded 8 many of the abnormalities. So in a very mild
19 neuropathy, all your examination scores will be
0 normal.
21 I would think we'd probably not be
22 surprised. The only one that was correlating well

Page 276

1 was the modified Toronto because it had questions
2 of neuropathy involved in the examination.
3 So again, how we want to kind of look at
4 this depends a bit on our outcomes. Again, if
5 we're looking at a defined small fiber neuropathy
6 population that's incredibly early, maybe a nerve
7 density isn't adequate because it's not going to be
8 abnormal yet. Maybe this is a challenge we have to
9 think through; what are the other alternatives.
10 So I think we have many steps ahead of us in
11 this process, but I do think we need to come to
12 some agreement by disease type or subtype. Are we
13 going to be specific, in this case, for example,
14 impaired glucose tolerance or other types of
15 neuropathy? How do we define those disease states?
16 I think that's really critical. Test questionnaire
17 availability is important. If it's not available,
18 we can't use it. It's as simple as that.
Simplicity utility, so the NTSS is widely
20 used. It is more complicated. I think you'd get
21 more errors in its use because of the complexity of
22 a 4-by-4 block. People get a little confused about
how to fill it out. Clarity for this is important
These are my ruminating thoughts on questionnaires and examination, so questions?

Noah?
DR. KOLB: Noah Kolb. Chris, that was a really great talk. I'm interested in what you're saying about using the disability scores, like
don't apply it to a lot of your clinic patients.
And I guess the really important thing about using the right measure for the study that we're doing.

I've noticed it in some of our chemotherapy induced neuropathy studies where although the NTSS-6 is clumsier, patients often say it's the thing that best describes their symptoms. And what
I'm struck by is that in a world where a
patient-reported outcome measures are increasingly
important, that we don't have a lot of kind of quality-of-life metrics that are really specific to this, that really should be considered for outcome measures.

DR. GIBBONS: Yeah, it's an important one. Gordon?

1
2 have da
relationship between clinical scales, symptom
scales, exam scales, quality of life, and
biomarkers. And I can tell you in diabetes,
including very mild diabetic neuropathy, what we're
finding is very good correlations actually between
sensory amplitude, nerve conduction studies, and
skin biopsy, and these measures. And the measures
correlate with one another.
But I think what's also important is it doesn't really matter -- it matters somewhat whether or not skin biopsy correlates with an exam score, but I think what we're really interested in -- and this goes I think to Noah's point -- is
the extent to which these scales, particularly
examination scales in our biomarkers, correlate with meaningful experience.

I think your criticism of the scale is that it's not meaningful. So we're actually looking at objective measures of function, so fitness timed up and go balance measures and whatnot. And we're

1 seeing similar correlations with several of these.
2 DR. GIBBONS: I think this highlights
3 really, what our own data is, is that in certain
4 diseases like diabetes, there's a very strong
5 correlation between nerve conduction studies,
6 examination, and biopsy data that's very clean.
7 You can move this into other disease states, and it
8 may not be as clear, and I completely agree.
9 DR. DWORKIN: Karin, James, and Roy.
10 DR. GIBBONS: Karin?
11 DR. FABER: Yes. I think if you go into
12 more detail in the RODS scale, for example, this
13 scale is being built by the patients, by their
14 answers. So the scale is targeted for at least our
15 population of small fiber neuropathies. And there
16 was not lots of ceiling and floor effects on that.
1 So it really means that you have a different 8 population than we do. That's for sure.
19 DR. GIBBONS: Yeah, I agree, and that's the 20 challenging part.
21 DR. FABER: Also, I think what we know from
22 other diseases, especially from the inflammatory

Page 280

1 neuropathies in which we did a lot of research and
2 outcome measures, is that the RODS scale was far
3 more able than any other measure to capture changes
4 over time and also after treatment.
5 So it is very important to look carefully
6 and not only measure, for example, whatever we want
7 to measure on the patient.
8 DR. GIBBONS: Exactly. I think picking your
9 population understanding it well is so critical.
10 James?
11 DR. RUSSELL: Yes, Chris, I actually thought
12 I may be suffering from dementia when I was
13 listening to you doing that, which may be true.
14 But I actually looked back at the original paper
15 Lindsay Zilliox was the first author on, and in
16 fact it was signs and symptoms of neuropathy, and
7 they had to have an abnormality of
8 electrophysiology or the skin biopsy. So they do
9 have signs of neuropathy and they do have those
20 other changes as well.
21 DR. GIBBONS: There were two papers. This 22 was the second one, and we can talk offline later.

I think this one had only symptoms for two years in this particular group.
3 DR. RUSSELL: Okay. Anyway, the latest one
was signs and symptoms. But the point I really
wanted to make here is I think you're really
looking at entirely different factors here. Trying
to compare a clinical scale with an objective
measure like the intraepidermal nerve fiber
density, there is a correlation. In fact, there is
a strong correlation with the SAS and the intraepidermal nerve fiber density, but generally speaking, that is not the case.

I think you're really looking at measures that are impacted by factors that are very remote from the pathology that's occurring in the
peripheral nerve. And when you get to
patient-reported outcome scales, you're even more remote from the system.

So you're really looking at measures that look at many other factors that are impacted by many different systems, and that you really have to realize and say, are you going to include those?

## Page 282

Plus you're going to have a more objective measure
that looks directly at the nerve or are you just
going to use those clinical measures? I would say
probably not.
DR. GIBBONS: You're making critical points
which are the questions don't necessarily equate to
any of our exam or test findings, and it may not be
necessary to. But still understanding what the
population is that you're intentionally studying
and why, so that you can in fact get a dynamic change, hopefully, in response to a treatment would be the goal.

DR. RUSSELL: I would agree.
DR. DWORKIN: Let's go to Roy before coffee.
DR. FREEMAN: I want to bring us back to
case definition, inclusion and exclusion criteria,
which is something that we're going to have to be writing about. So a couple of questions related to
that, something for you to think about, in fact,
all of us so that by tomorrow our thinking is
fairly honed down on that.
So question one is, any of the
questionnaires and structured examinations that you
2 presented, have any of them being used as screening
instruments, cutoffs, patients above or below this
4 can or cannot be excluded in a small fiber
5 peripheral neuropathy trial? So that's
6 question one.
7 Question two, if we look at what
8 we see in a typical small fiber peripheral
9 neuropathy trial, whether it be a symptomatic or
10 perhaps even disease modifying, the two
1 primary -- let's use the word "domains," but this
12 is actually bigger than the way you and we have
been using domains in the people that you spoke about.

But the two primary areas of interest have
been pain and autonomic. In pain, there are a
couple of generic screening questionnaires, DN4,
LANS, and Pain DETEC. How do you see those as
fitting into a potential inclusion criteria, or at
least two of them have been used with specific
cutoffs for inclusion in a pain clinical trial,
and in fact in some small fiber neuropathy clinical

Page 284

1 trials, and then less has been done on the
2 autonomic side. But do you see or have you come
3 across any screening tool on the autonomic side
4 that might be suitable as an inclusion/exclusion
5 criteria?
6 DR. GIBBONS: So many loaded questions, but
7 the answer is yes, yes, no, yes, and no.
8 DR. FREEMAN: I understand we need to think
9 about it, but we're going to need to do this
10 tomorrow.
11 DR. GIBBONS: But to go into a little bit of 12 the response here, clearly in many of the
neuropathy trials, there are inclusion/exclusion
criteria often based on examination thresholds,
maybe severity of $S$ above the NIS-LL, or I think
you guys have done UENS as well.
If it's above a certain score, it may be
excluded. Have you done an above --
MALE VOICE: For severity, yes.
DR. GIBBONS: Severity, yeah. So that's
often an exclusionary criteria on the examination
22 scale. I think that standard for many -- the
assumption being once you're at a certain point, you cannot improve.
Minimum scores I haven't seen too many of, but I think people have included, particularly for disease modification, a minimum requirement of neuropathy on an exam score as well. So some score above a threshold has been a definite definition.

Questionnaires inclusion, I don't think l've
seen that particularly as an exclusion/inclusion on
the -- the NTSS-6 has been used in some of the diabetic neuropathy trials as a minimum inclusion point, so you have to have a value above a certain amount to be included, an exclusion point above, which I have not seen or I don't know off the top of my head.

For the autonomic, again, we get into there are a number of autonomic scales, particularly if they're autonomic neuropathies. The COMPASS scores
have been used. Some people use CAST scores, which
we'll talk about -- or I guess David Herrmann will
be talking about later in terms of autonomic testing.

## Page 286

1 So these scores have been used and defined.
I think getting back to your pain questionnaire, I
tried to focus a bit more on the small fiber
neuropathy specific as opposed to pain just because
I thought it would grow into too complicated a
topic. But clearly, those are, I think,
multifaceted questions that, depending on the trial
design and what your focus is on as a primary
endpoint, could be a primary endpoint in
inclusion/exclusion criteria. All of these could
be the case. So yeah, it is dicey.
DR. DWORKIN: Thanks very much, Chris.
(Applause.)
DR. DWORKIN: We will reconvene here at 3:20.
(Whereupon, at 3:05 p.m., a recess was taken.)

Panel Discussion
DR. DWORKIN: We'll go to about 4:15. I'd like to welcome to the panel, in addition to the three speakers, Roi Treister -
(Pause.)

1 DR. DWORKIN: -- Dr. Roi Treister, formally
2 at the University of Haifa; and Dr James Russell,
3 professor of neurology at University of Maryland;
4 and Dr Michael Polydefkis, professor of neurology
5 at Johns Hopkins. So welcome.
$6 \quad$ I think the very best way to start a panel discussion like this, I think is to ask the three
8 people who you haven't seen yet because they
9 weren't asked to be speakers, Dr. Treister, and
10 Dr. Russell, and Dr Polydefkis, whether they have
any questions or comments or thoughts about the
presentations this afternoon from Dr Gibbons, and
Dr. Haroutounian, and Dr Smith.
So starting with you, Roi, any questions?
DR. TREISTER: Sure. Many, many great open
questions were raised today. I think what I
believe would be the right pathway would be to try
to be pragmatic and focus on the drug target, on
the condition, on the outcome measure, excluding
criteria which are obvious, while trying to answer
most of the open questions by using exploratory
measures that will be used in the phase 2 studies

Page 288
1 that are coming. Hopefully in the phase 3, there
will be some open questions answered.
3 I have more specific comments
regarding -- but I will wait to the right time for
5 these.
6 DR. DWORKIN: Thank you. Dr Russell?
7 DR. RUSSELL: Perhaps I can say, you
addressed where we are now. Where would you like
9 to see us be on the future? You very
10 systematically went through and you looked at all
11 these measurements that are used and how they may
12 be associated with various measures. But if you
13 were to come up with an ideal measurement, what
14 would you see as that including?
15 DR. HAROUTOUNIAN: I presented
6 [inaudible - off mic].
MALE VOICE: I don't think you're on.
DR. HAROUTOUNIAN: I think one of the
challenges was the huge heterogeneity in taxonomy
and terminology that people use and also the
inclusion/exclusion criteria of course for the
studies. In terms of where I would like to see us
in a few years, probably the ideal scenario would
be can we come up with a set of criteria that have
the optimal sensitivity and specificity that we could use for including and excluding patients in
clinical studies and probably a different set of
those that would be relevant to the clinical
setting for diagnosing and then treating small
fiber neuropathy.
I think just a more thorough analysis,
quantitative analysis of what people have found in
different studies looking a bit more thoroughly
into what might be the key three or four parameters
that could help us with good enough sensitivity and
specificity to enroll patients to studies because
obviously, there are dozens of various domains that
are tested, and apparently most of the things
people have done or not necessarily applicable to
the setting of large studies or multicenter studies.

So the way I see is to have gold standards of well defined three or four criteria that we'd come to an agreement on the diagnosis of small

Page 290
fiber.
DR. DWORKIN: Anything else, James?
DR. RUSSELL: Let me take this a little
further. You actually looked at all the diagnostic
instruments, and I kind of have some fairly strong
views about I think that they are a value in a
sense, but perhaps not in a clinical trial setting.
So what would you say based on those
instruments that you reviewed? I do appreciate
mine are in there, so I won't feel hurt if you
deeply criticize those neuropathy endpoints. So
what do you think?
DR. GIBBONS: You promise you won't hit me
if I say the wrong answer?
(Laughter.)
DR. RUSSELL: Chris, I'm very critical of my
own instruments, I have to tell you, so feel free.
DR. GIBBONS: I do think actually the
instruments will be a critical part of any clinical
trial, and I think both examination and
questionnaires are of incredible value.
The disease I like -- well mostly because

1 l've spent a lot of time thinking about it, is
2 treatment-induced neuropathy of diabetes, which is
3 a predominantly small fiber, acute neuropathy in a
4 situation where I found it particularly valuable as
5 a construct because there is a dynamic change at
6 the initiation of the problem followed by a period
7 of recovery in people with type 1 diabetes, which
8 means that I can conceptually validate some of
9 these questionnaires and what responds. At least I
10 see a dynamic range that changes, and I can see
11 what happens.
12 I think there are a couple things that I do
13 see. Examination scores do change. The UENS
14 actually changes fairly dynamically; even the
15 NIS-LL does change as well to a smaller degree. It
16 doesn't have quite the same dynamic range, but what
7 it would allow me to do is pick up any motor
18 involvement.
19 So at least on my own thinking about this, I
20 would include two examination criteria, one looking
21 at more motor as well as one as small fiber, one to
22 exclude or to define what was involved and one to

Page 292

1 really focus in on the small fiber component. But
2 then on the questionnaire side, I think as you
3 highlighted, I would include a small fiber sensory
4 questionnaire specific and a small fiber autonomic
5 questionnaire specific because I do think they both
6 respond but also informed differently depending on
7 the distribution of symptoms. And I think you need
8 to know that going in from the get-go as to where
9 the population will go.
10 In this particular population, the
11 treatment-induced neuropathy, almost all our
12 sensory and they have a big component to that. But
13 there is a large autonomic piece, and many of the
14 symptom scores, the autonomic symptoms scores, will
5 respond dynamically to these changes.
16 So I think there's an incredible value in
17 this, particularly as we're thinking about clinical
18 trials with endpoints that would have
19 patient-oriented outcomes or patient-centered
20 outcomes. I think they need to be included;
21 particularly once the FDA starts to consider
22 clinical trial endpoints, I think it's a

```
requirement. So I think we need to have these, but
I think we need to be cautious about mixing which
for one. But I would actually advocate, depending
on the particular disease, having more than one.
    DR. DWORKIN: I want to interrupt and assert
a moderator's prerogative and push you hard, Chris.
    DR. GIBBONS: Okay.
    DR. DWORKIN: So I'm hearing that a
    distinction needs to be made between the
    questionnaire as an outcome measure, where we give
    a baseline and some endpoint and look at change
    group differences, and something administered at
    baseline to be inclusion criteria in a clinical
    trial, part of the diagnostic criteria.
    I don't know if this is what James was
    asking, but I didn't hear anything in your talk, or
    Simon's talk, or any of the other talks that
    convinced me that there's a questionnaire out there
    that needs to be included with some kind of
    threshold score as an inclusion criteria and if
    we're going to do either a symptomatic or disease
    modifying clinical trial.
```

                    Page 294
    Is there any sort of questionnaire, or can
we just set that aside and leave the discussion of questionnaires for the next meeting of this group,
which could be on outcome measures? And then we
would talk about which of these questionnaires are
reasonable, primary, or perhaps secondary outcome
measures. But in the diagnostic inclusion/
exclusion criteria setting, is there anything?
DR. GIBBONS: This was Roy's point earlier, as he was prodding me for the same response, which is, yes, there are absolutely questionnaires that have been used and I think using criteria for
threshold. I think the most widely used, at least in the neuropathy, is the NTSS-6, which has had a minimum threshold for inclusion in some studies.
You have to have symptoms and it has to hit the
score, so that has been used.
DR. DWORKIN: Would you recommend that if we were going to design a clinical trial tomorrow afternoon between 1 and 4, would you recommend that as inclusion criterion for our clinical trial?

DR. GIBBONS: So it would entirely depend on

1 whether this was diseased modifying or symptomatic
2 relief. If it was disease modifying, I'm not
3 convinced that I would see a dynamic change. Maybe
4 I would include it as a threshold for symptoms to
5 be involved, but I wouldn't use it as an endpoint
6 perhaps for recovery.
7 DR. DWORKIN: Use it for diagnosis.
8 DR. GIBBONS: Diagnosis.
$9 \quad$ DR. DWORKIN: In a disease-modifying trial?
10 DR. GIBBONS: I would be hard pressed to say
11 to come up with a good rationale to say they had to
12 be included. I think you would want it for many
13 reasons that may not be scientific.
14 (Laughter.)
15 DR. DWORKIN: I'm not letting Michael off
16 the hook. I want Michael that he gets to go.
17 DR. SMITH: I think for enrollment criteria, 18 I would answer we're going to use whatever taxonomy
19 we come up tomorrow. It seems to me unlikely we're
20 going to tie our taxonomy to a specific instrument.
21 We may include the domains, which is the flavor of
22 the day that that instrument queries. But that's

Page 296
1 not something --
2 DR. DWORKIN: So that was my point, but said 3 much more succinctly, Gordon. Thank you.

4 DR. SMITH: You're most welcome.
5 DR. RUSSELL: I would like to comment on
6 that before we go on to Michael, and that is we
7 have to be very careful with the symptoms scores.
8 schools.
9 Symptom scores are quite sensitive, as Chris 10 pointed on his lecture. The big problem with them 11 is that there's a high variance, and the variance 12 is the thing that kills you when you look at power 13 analyses for an endpoint measure. So that's the
14 thing that you really have to take into account if
15 you're going to use symptoms scores as endpoint
16 measures.
DR. HAROUTOUNIAN: Maybe if I can add, 18 there's another point. If it's a disease-modifying agent trial and we use some of the symptoms scores 20 to potentially correlate with outcomes, the

21 questionnaires like NPSI, DN4, LANS, they have very
22 little correlation or association with

```
morphological changes in small fibers.
    FEMALE VOICE: You said very little?
    DR. HAROUTOUNIAN: Very little. So
    questionnaires like the Utah or the Michigan, the
    ones that are neuropathy scores, they correlate
    much better with the intraepidermal never fiber
    density, but symptom questionnaires, NPSI and DN4,
    they are very poorly correlated with biopsy
    findings.
    So I think it's a caveat, and there's quite
    a bit of work to be done I think research-wise to
    understand the association between what is the
    difference between painful and painless neuropathy
    because morphology-wise, they're not much
    different, but symptom-wise, there's a huge
    difference between them, and what is it that
    mechanistically differentiates those two patient
    populations, and only then maybe we can use symptom
    measures in a meaningful way.
    DR. DWORKIN: So I want to make sure that
    Michael has a chance to comment or question the
    speakers.
```

DR. POLYDEFKIS: Well, I guess I'm kind of struggling with the concept of a trial because I think there are many different types of trials.
You have the pain trial one way, disease
progression a different way, and disease
modification a different way. And all of those can be small fiber neuropathy. That sort of tailors the measures in the inclusion criteria based on what the objective is.

DR. DWORKIN: I want to ask what's probably a naive question because of course l'm not on neurologist. It seems to me when we design a clinical trial for some treatment, symptomatic treatment, in painful diabetic peripheral neuropathy, you have criteria first of course for diabetic peripheral neuropathy, and then we have some criteria for the pain part of it that allows us to select which patients with DPN have enough pain to go into our trial of whatever, gabapentin.

So I guess what I'm not getting is why is it any different for CSPN iSFN? Why can't we have a 2 set of diagnostic criteria for the condition that

1 we've been talking about all day today? And if
2 it's a trial of a symptomatic treatment for pain,
3 then of course the patients with CSPN are going to
4 have that pain. It would be silly that they don't.
5
But why are the diagnostic criteria for CSPN
6 in any way a function of whether it's a symptomatic
7 trial of gabapentin, a disease-modifying trial of
8 topiramate, a disease-reversal trial of some brand
9 new aldose reductase inhibitor. It seems to me
10 that the diagnostic criteria and inclusion/
1 exclusion criteria should be pretty invariant
12 across the clinical trial, though the point we all
3 agree on is your outcome measures might be very
14 different depending on the drug and the objective.
15 So am I missing something?
16 DR. GIBBONS: I can get more specific about painful diabetic neuropathy trials. There were many diabetic neuropathy trials that didn't have those painful endpoints.

DR. DWORKIN: That's exactly my point. Shouldn't the criteria for DPN be the same in the gabapentin trial as in the aldose reductase

Page 300
1 inhibitor trial? Because the condition is DPN, and
2 if you want to treat pain in DPN, they've got to
3 have pain.
4 (Crosstalk.)
5 DR. GIBBONS: I think Eva's going to jump in 6 with an excellent point.
7 DR. DWORKIN: Hopefully someone tells me I'm 8 naïve and I'm barking up the wrong tree.
9 DR. FELDMAN: No, not naive, but maybe 10 barking up the wrong tree. I think it all goes back
11 to the function of the fibers, right? A great deal
12 of diabetic neuropathy that we've entered in -- I
3 don't even know how many trials we've done at this
4 point -- is primarily large fiber diabetic
15 neuropathy, and those patients frequently have an
16 insensate foot, so they don't really complain of
7 pain. I mean, that's the function of those fibers,
8 you know, large fiber function. Yet, when you
19 think about small fiber function, it's very
0 unusual.
21 I hope the panel will agree with me. I'm
22 going to particularly look at James in terms of
thinking of the biology of the small fibers. It
would be unusual to have a small fiber insult,
whatever it may be, without it being painful. So
it's the difference in terms of the function of the
fibers that I think calls this particular aspect into question.

I go back to what Anne Louise said, the idea of domains, though, which is maybe, again, what
you're kind of seeking, is there a domain or an
idea that you're just going to define just
structurally a small fiber neuropathy, and then a
second domain is small fiber neuropathy with symptoms.

But I personally don't think I have seen in a fairly large clinical practice for many years a small fiber neuropathy that does not have some aspect of pain, except for of course the complete insensate, genetic neuropathies.

DR. OAKLANDER: I think there's an even more basic question here. We're trying to make a case definition for a cell-based disease, small fiber polyneuropathy. What's a small fiber, dudes? I

Page 302
mean, we used to talk about somatic; we used to
talk about autonomic. The pathology studies,
though, modern immunohistochemistry studies have
shown so clearly that functions that we would
intrinsically think of as autonomic are in fact
mediated by CGRP positive, quote/unquote, "somatic
small fibers." These, for instance, are the fibers
that innervate the bone and that mediate deposition
that control the bone mass. They're CGRB positive.
So I think that's the elephant under the rug, is that these small fibers have such protean functions, they're evolutionarily so primitive,
pain is just one of their functions, but their overarching goal really is defense of our body against threats, and they also mediate itch, and they control the vasculature.

So how can you decide what small fiber neuropathy and what symptoms should be required for inclusion until you figure out what are we talking about as the small fibers? Does it include autonomics or is that separate? I think some people think of them as separate; some people think
of them as together.
2 DR. DWORKIN: First Todd, then David.
3 DR. LEVINE: I mean, you've got the right
4 tree. It's just that they have a lot better tools.
5 They have a disease, diabetes. We're talking about
6 dozens if not many, many dozens of diseases, so you
7 have to branch off of that tree many, many times.
8 And in those studies, they generally use nerve
9 conduction studies, and they just said this is 10 abnormal.

11 They could've picked many other things.
12 We're in the same position. We're just a hundred 3 years behind them. So we are just going to have to pick one thing and say this is what defines small 15 fiber neuropathy the same way they defined what diabetic neuropathy was, and then go with it. The hard part is separating out -- I think Anne Louise is right -- is that you just have to decide what you're going to try to treat because there are -- I
20 was actually going to raise the question also for 21 the panel, one of the things that we haven't talked 22 about in thinking about trials is other somatic

1 symptoms, which in your paper is an enormous issue
2 and I think in practice is a huge issue of fatigue
3 and sleep and cognition, which, again, there are
4 many reasons. It could be the drugs, it could be
5 the pain, it could be sleep, but those are enormous
6 issues for patients that we need to improve on as
7 well, again, further complicating the issue.
8 So I think the only way forward is just to
9 make a decision and move forward with it. This is
10 the definition. These are the diseases we allow in
11 or don't, idiopathic or these others, and then just
12 go because it is very complex.
13 DR. DWORKIN: David and then Roy.
DR. HERRMANN: So maybe this is just stating
the same thing slightly differently to the
16 discussion between Chris and James, and then your
question what am I missing. I would say you're not
missing much, Bob, because I think operationally
for any trial, you're going to have diagnostic
criteria.
As we define those for small fiber
22 neuropathy, I think we're going to have to be clear
is this distal small fiber neuropathy, chronic with
a certain time course, probably a very different
entity or group of entities from an acute small, non-length-dependent small fiber neuropathy or from
a autonomic predominant small fiber neuropathy.
$6 \quad$ So we at least phenotypically going to have to define the entity and have a set of diagnostic
criteria that could be applied across different
trials, but then we're not going to enroll people
who have no disability or no patient-reported 11 impact in trials.
12 So while it may not be a diagnostic
13 criteria, some measure of disability or some
14 measure of patient-reported impact and degree of
15 impact is going to have to be there as part of
16 inclusion. So when you do pain studies, you'd take
17 a numerical rating scale of 4 or greater. Well,
18 depending on what you're studying, there's going to
19 be some not diagnostic criteria, but patient impact
20 or disability inclusion threshold. And that could
21 be different depending on what, as Michael said,
22 you're starting

Page 306
DR. DWORKIN: Roy?
DR. FREEMAN: So I actually rather like your
approach to it, and I'm going to continue the
analogy that you build up.
The way I think of a painful peripheral
neuropathy trial is you start off and you say,
okay, does this patient -- a diabetic painful peripheral neuropathy trial -- does this patient
have diabetes? And that's the first question. And
the equivalent of that is does this patient not have. And how much do we need to do to define that the patient does not have, well, Gordon is going to tell us exactly how much we need to do, and it's going to be not quite as discrete as the diagnosis of diabetes. But even that, the diagnosis of diabetes as we know is not quite discreet either.

The next step then is does the patient have neuropathy? And then we can talk about -- and David touched on that. But we can decide how we are going to define neuropathy. Will it be defined by a intraepidermal nerve fiber density? Will it be defined by symptoms? Will it be two out of three?

1 Will it be proximal? Will it be distal? This is a
2 discussion, but that's the point. Then the third
3 and continuing the diabetic painful peripheral
4 neuropathy trial, we will say does the patient in
5 that case have pain, and is that pain neuropathic?
6 So we've gone through diabetes, neuropathy,
7 pain, neuropathic pain, because, as we all know,
8 there are many causes of pain in diabetic patients
9 that are not neuropathic. So I rather like the
10 idea of saying, okay, does the patient not have
11 diabetes and everything else, too? Does the
12 patient have a neuropathy? And this is a
3 discussion of distal sensory proximal
14 ganglionopathy pattern can go on in that, and lots
15 of spaces to fill in. And then the equivalent of
16 pain is over here. We are dealing with the diverse
17 manifestations of a small fiber neuropathy, which
18 can be sensory, can be autonomic, can be both.
19 Here is where I think the small fiber trial
20 is unique. We're going to be talking about whether
21 the drug is a drug directed against pain, or
22 autonomic, or both, and whether the trial is

1 symptomatic or disease modifying. So in brief, I
2 like the tree.
3 (Laughter.)
4 DR. DWORKIN: How about Chris first, and 5 then there were other people.
6 DR. GIBBONS: So I just wanted to throw out
7 sort of a conceptual kind of process to kind of
8 work through some of the challenges that we are
9 going to face going forward when we're trying to
10 bring together a consensus on this. We talked
11 about some of the hereditary neuropathies in terms
12 of their genetic components and what the
13 implications of that were. What we really didn't
14 touch on at all were the hereditary sensory and
15 autonomic neuropathies, where clearly you have a
16 population of patients that has a profound loss of
17 small nerve fibers from an early age on.
18 I guess the question we can ask ourselves 19 amongst those with really no sensory fibers
20 whatsoever in their body, they are missing a set of
21 symptoms that we widely attribute to maybe small
22 fiber neuropathy. Is this in some way informing us
about the relation of these symptoms to the disease
or not? Can we infer something from those patients
more broadly into the patients were asking you
about? Do the dependent patients with hereditary
sensory autonomic neuropathies, the Riley-Day
syndrome, the classic ones, why don't they have
fatigue? Some of our small fiber neuropathy patients, why don't they?
9 They clearly have severe mutations or amputations, auto amputations, many issues related to lack of pain, but why don't they have some of these other symptoms that we presume must be mediated by? So is that in some way helping us think about this?

So I'm just throwing that out there, again, as another point to examine.

DR. DWORKIN: I think another systematic review, actually. Other comments, questions from the audience? Yes, Nurcan?

DR. UCEYLER: Maybe one comment to what Roy just said with the tree. So when you look at what
22 the patient does not have and then you go on

Page 310

1 looking for the neuropathy, and at the final stage
actually ask for symptoms, the tree just to
discuss, with this we would miss the patients I
think who do have very typical small fiber
neuropathy symptoms like burning pain in their feet
and do not have any signs of neuropathy that we can
get with the methods we have in hand at the moment.
So there is a segment of subgroup of
patients who have burning feet, very, very typical
10 history, and you do the skin biopsy, and you do the
11 QST, and the CCM, and the prep and whatever, and
12 you do not find any sign for neuropathy. You will
13 find some when you do microneurography. This is
14 what we have experienced, a large group of patients
15 going through all this with burning feet. But the
16 sensitivity is not high enough for all these
17 techniques, and in the end you do microneurography
18 and do see spontaneous activity. I like very much
19 the pragmatic way of looking at it with this tree,
20 but just for discussion, there are patients who
21 have, I would say, small fiber neuropathy, but
22 where we do not see the neurography.

1 DR. FREEMAN: Absolutely. And I absolutely
2 agree with you, and I have thought about that, and
3 I think my response to you would be you're
4 absolutely right. But I think the likelihood of
5 any clinical trial of introducing patients who do
6 not have neuropathic pain is greater, and that I'm
7 prepared to make that compromise to say that, sure,
8 I may be admitting -- and I don't know -- an
9 unknown number of patients who truly have
10 neuropathic pain, but I would rather do that than
11 risk including patients with metatarsalgia, plantar
12 fasciitis, calcaneal spurs, and all of the other
13 causes of non-neuropathic foot pain. But I take
14 your point in its entirety.
15 DR. UCEYLER: And maybe one has to
16 distinguish here also, what we are trying to get a
17 criteria for trials, and I think it is, again,
18 something else. I'm thinking about criteria of
19 small fiber neuropathy in general. So what are we
20 using at the moment to make a diagnosis when we see
21 these patients? So am I allowed to call the
22 patient small fiber neuropathy patient if I do not

1 find any science for neuropathy?
2 But I think here we have to distinguish, and
3 for a clinical trial, this is a very pragmatic and
4 good way to go ahead I would say also. And the
5 other question would be for another panel maybe to
6 think about new criteria or reformation of the
7 criteria.
8 DR. DWORKIN: Rob, I think you had your hand 9 up.
10 DR. SINGLETON: I think Roy expressed my
11 sentiment quite well. The only other thing, going
12 back a couple of comments,
13 there are a lot of potential criteria and different
14 aspects of small fiber neuropathy, but I think I
15 would advocate that we should be inclusive but
16 honed to somatic sensory exam and complaints.
17 I take your point there are any number of
18 roles of small fibers, but kind of like Roy's
19 point, there's a limit to how much we can take into
20 account when we consider a practical set of
21 eligibility criteria that will be useful for the
22 majority of clinical trials.

```
    DR. OAKLANDER: Are we going to include
    clinical diagnostic criteria or only research?
    DR. DWORKIN: I'm going to get there.
    Gordon?
    DR. SMITH: Yes. I want to follow up on
that because Anne Louise's comment is really
resonating with me, and I'll just be honest. I
have a lot of ambivalence about small fiber
neuropathy as a distinct disease entity, and I'm
trying to think of other disorders that we have,
and personally I hope that we see, that are defined
    in that way. I can think of maybe motor neuron
    disease is a category of disorders, but when we
    think about the taxonomy of motor neuron disease,
    we talk about ALS or we talk about PLS. And it's
    not based on the structure; it's based on the
    clinical phenotype.
    I question whether there's anything
    fundamentally different about the patient who has a
    severe painful idiopathic neuropathy who has mild
    vibratory loss in their great toe and their next
    door neighbor who does not. And maybe this is a
```

                    Page 314
    topic for later or tomorrow, but I think it's
    really important. I think Roy's description of
    climbing up the tree and your construct is
    absolutely the way we need to be thinking. I think
    we can factor in graded certainty, probable,
    possible, confirmed or whatnot to handle situations
    where there are individuals who have clear
    symptoms, signs, but not the pathology we're
    looking for. And in individual trials, a
    neuropathic pain trial, maybe you don't require the
    pathologic finding.
    But I think something that I'm really
    struggling with and I'd love to hear everyone else
    discuss is the concept of the validity of small
    fiber neuropathy as a diagnostic entity as opposed
    to idiopathic painful neuropathy with, I don't
    know, disproportionate small fiber injury, and I'm
    just throwing out words.
    DR. RUSSELL: Bob, I'd like to also follow
    up on Roy's comment. Roy actually slipped it in
    there, but it's a problematic branch of this tree,
    and that is disease modifying. For example, if a
    1 person gets an improvement to the NTSS-6 by 10
2 percent, is that disease modifying or not?
3 So we can agree that we can use certain
4 scales to determine if there's been improvement in
5 a measure of small fiber neuropathy, but the
6 question is, is that improvement really disease
7 modifying? And that's a branch which is going to
8 be quite difficult to define.
9 DR. DWORKIN: Giuseppe?
10 DR. LAURIA: This part of the discussion, I
11 want to share with you my opinion. I think doing a
12 clinical trial means making a negotiation between
13 real life, so real patients, the concept behind the
14 trial and the feasibility of your outcome measures.
15 So in this case, following what Roy just said, if
16 you are dealing with a drug in which you want to
17 see whether it has an effect on neuropathic pain,
18 you will have to define a category of patients
19 that -- I mean, I get your point, Nurcan, that
20 probably not all the patients that you will recruit
21 will present all the patient that enter your
22 outpatient clinic, but you have to make a decision

Page 316
1 in terms of criteria to make the trial feasible.
2 In this case, what you want to have is an
3 homogeneous group of patients that can be assessed
4 in order to have good specificity, so keeping away
5 the patients who do not have the disease and trying
6 to have a most true positive and deciding what is
7 your outcome measure in terms -- James, your
8 example, in my opinion, is symptomatic outcome, not
9 a disease modifying because disease modifying has
10 to be measured in terms of disability, at least.
11 This is what happens to any motor neuron or
12 whatever. But if you are talking about pain,
13 you're talking about the symptom that is influenced
14 by a number of variables that we are not taking
15 into account because I haven't heard anyone talking
16 about, for instance, mood, anxiety, depression.
17 Should we stratify the patients based on that? It
18 could be the case. I mean, we don't know whether
19 the response to a drug, how much it is influenced
20 by that. I'm very surprised by the fact that in
21 the last 50 years, any drug that entered the market
22 had the same performance,
although the target is different.
DR. DWORKIN: Roy?
DR. FREEMAN: I have a very simplistic
approach to disease modification. I think we in
the neuropathy field and in the pain field actually
have it relatively easy compared to say, for
example, the Parkinson's field. I think if you
stop the drug for a reasonable period of time and
the effect of the drug endures compared to your placebo group, you have modified the disease.

On Parkinson's disease, I think it's much more tricky because they are on symptomatic treatment, and you have to withdraw not only the drug but the symptomatic treatment and compare
them. It's a real challenge, and I think that's
one of the reasons why it's been so challenging to
develop a drug to modify the natural history of
Parkinson's disease. But I think we have it
relatively easy. We can define how long you need
to -- what kind of time window you need between
stopping the drug and your assessment. But if it endures, I think that's modified the disease.

Page 318

## DR. DWORKIN: Amanda?

DR. PELTIER: Actually, I think that there's
a couple issues, and actually the analogy of
Parkinson's is actually probably better than you
think it is because --
DR. FREEMAN: I think it's good, by the way.
(Laughter.)
DR. PELTIER: But my point is a lot of
movement disorder specialists will tell you that
Parkinson's, if you see one Parkinson's patients,
you've seen one Parkinson's patient. And I think
that's one of the issues with small fiber
neuropathy is that it's not due to a single
disease; it's due to multiple different factors.
It could be due to genetic factors, it could be due
to toxicity, could be due to underlying metabolic
factors, et cetera. And because those
non-myelinated fibers have multiple
functions -- you could have patient that has primarily autonomic, one patient has primarily burning.

So it really goes back to what disease or

1 drug that you're trying to specifically treat. If
2 you're specifically trying to treat pain, you're
3 going to be more broad than if you are trying to
4 specifically treat a specific entity as is like
5 small fiber neuropathy in sarcoidosis, because you
6 can't be too broad in that case.
$7 \quad$ It's just like saying, well, I'm going cure
8 Charcot-Marie-Tooth disease. Well, am I going to
9 cure Charcot-Marie-Tooth just from PMP22
10 duplications, or am I going to delete all the
11 300,000 other mutations that have been found? So
12 that's I think the problem that we deal with is
13 that it's not just one disease entity because it's
14 not the one manifestation.
15 DR. FREEMAN: Absolutely. I don't want
16 to -- I said I have a sympathetic approach to it,
7 but I think it's more complicated. You treat the
18 pain, patient exercises more, is more mobile, and
19 by being more mobile, maybe you're treating the
20 underlying disease, sort of the Singleton-Smith
21 approach to the treatment or disease modification
22 in neuropathy. So it's not as simple as I made

Page 320
1 out, but I think it is not that complicated either.
2 DR. DWORKIN: I think I saw another hand.
3 Todd, yea?
4 DR. LEVEIN: I just was going to say,
5 Gordon, the analogy -- that's why I like that one
6 slide I started with because causes for mixed fiber
7 neuropathy is just put mixed fiber neuropathies on
8 one side and small fiber neuropathies on the other.
9 It's really the same pathway that we're following;
10 we're just sort of behind it, right?
11 So you just need a way to make a diagnosis,
12 which we're going to have to agree what defines
13 small fiber neuropathy.
14 There are hundreds of different causes, and you can
15 certainly blur them all together, but when it comes
16 to doing clinical trials, most people
17 prefer -- you're breaking the rule a little bit now
18 with your current trial, but most people have
19 preferred historically to take as homogeneous a
0 group as possible. So we just define that as best
1 we can.
22
Again, I agree with Roy, which is it is
hugely complicated, and we can either try to
address all those complexities or just say this is
the path that's been laid out with mixed fiber, and
we're just going to try to follow that path as best
we can.
6 DR. SMITH: I just want to respond. I still am very skeptical of lumping patients with a
particular phenotype into small mixed large. I
just question why we aren't talking about painful
neuropathy with small fiber pathology. There are a
number of ways you can parse this, but l'll go back
to is there fundamentally something different with
patients who have very painful cryptogenic neuropathy, who have normal nerve conduction studies but have evidence of vibratory last on exam versus those who do not.

I see more of those patients than not, and I just worry that we're overcomplicating our criteria for small fiber neuropathy by drawing these really bright lights. I get the idea that there may be scenarios and the genetic data create one. It may be something unique about these very carefully

Page 322
defined subsets of patients who have isolated small
fiber neuropathy that are different, but is that
the taxonomy we're looking for as opposed to a
broader painful neuropathy umbrella?
DR. DWORKIN: Simon?
DR. HAROUTOUNIAN: Just kind of to follow,
when looking through the studies, there seemed to
be almost a rudimentary set of findings that are
common to those hundreds of different etiologies
and perhaps we should think about a very basic
inclusion type, and then each study or each
subgroup of small fiber neuropathy we could
recommend to do different ancillary type of tests to gain more knowledge.

It looks like the distribution of symptoms, potentially sensory symptoms, and skin biopsy, and perhaps warm detection threshold seem to be pretty consistent among all the trials; again, 80 percent, 75 percent, 90 percent, and the other findings are pretty specific to etiology or patient subgroups, et cetera. So perhaps we should try to focus on this maybe basic rudimentary group of --

DR. DWORKIN: We have 10 minutes left.
2 Eva, go ahead.
3 DR. FELDMAN: Could I just ask a question?
It's kind of we're coming full circle. So would
you -- and you have really done a very beautiful,
6 careful review -- include symptoms or not in the
definition? I mean, really, that's where you start
8 it, right?
9 DR. DWORKIN: I'm going to --
10 DR. FELDMAN: I mean, I'm asking him, not 1 you.
12 (Laughter.)
13 DR. DWORKIN: Okay, because I was going to
say let's talk about exactly that for the next 10
minutes. If I understood Roy's tree correctly,
we're going to exclude patients with frank diabetes.
(Crosstalk.)
DR. FELDMAN: No, no --
DR. DWORKIN: The way those of us have been involved in the development of this meeting is that primarily what we would like to do is come up with
diagnostic criteria for this condition that also
include inclusion/exclusion criteria for a clinical
trial, and the model here is DSM-V, the ISP
diagnostic criteria. So secondarily, perhaps
clinical practice, but primarily we're designing a
phase 3 trial for NINDS, or a pharmaceutical
company is designing a phase 3 trial to go to EMA
or FDA. So primarily, diagnostic criteria to be
9 used in clinical trials.
10 DR. OAKLANDER: Unfortunately, it ends up
11 getting applied in clinical practice, which is
12 what's happened to DSM. Given the absence of
13 clinical diagnostic criteria, our criteria that we
14 publish are going to end up becoming the de facto
15 clinical criteria, and insurance companies are
16 going to deny care reimbursement to patients
7 because they don't fit into our action. I'm just
saying at a practical --
DR. DWORKIN: I don't know what we can do
about that except put a sentence or two in an
article that the primary intent of the diagnostic
inclusion/exclusion criteria in this publication
are for use in clinical trials. I mean, I don't
see how we can prevent insurance companies from doing their reimbursement mischief. Unless someone has a better idea of how to prevent that, boy, does that seem above my pay grade.
6 DR. HAROUTOUNIAN: Can I just take two
minutes to address the symptom question?
DR. DWORKIN: Sure.
DR. HAROUTOUNIAN: If we're dealing with painful neuropathy, we have to address pain as symptoms. When we're looking at the specificity of things like burning pain or pins and needles or descriptors or DN4, NPS sites, none of the single symptom descriptors are specific or broadly applicable to different patient populations. So pain should be there, but it didn't seem that --

DR. OAKLANDER: The symptoms should be there.

DR. HAROUTOUNIAN: Pain.
DR. OAKLANDER: Pain.
DR. HAROUTOUNIAN: But I don't know if other symptomatic descriptors are kind of -- none of them

## Page 326

was consistent enough amongst studies and none of
them, both in terms of occurrence and severity,
corresponded with the small fiber pathology.
DR. SINGLETON: How about distribution? Did
you look at whether these questions about pain
were -- did that matter whether it was length
dependent or not?
8 DR. HAROUTOUNIAN: Could you repeat it?
9 DR. SINGLETON: You just said it doesn't
matter what the descriptor is. My question is the distribution, the anatomic distribution. Does it matter whether it's described as length dependent, and was that something that the questionnaires that you evaluated, the measures that you evaluated, was
that one of the things that was approached by these?

DR. HAROUTOUNIAN: So the distribution itself is not defined very well, but if you're looking at neuropathy questionnaire, like the Utah or the Michigan and the total score, they were pretty well associated, but not --

DR. SINGLETON: The exam skills had a

1 questionnaire, right?
2 DR. HAROUTOUNIAN: No, we didn't look at the 3 symptoms versus the exam skills.
4 DR. GIBBONS: So I know this is going to
5 come full circle to your clearly leading question
6 from the very get-go, but I think you did highlight
7 kind of the nudge in that direction, which is we
8 can define a small fiber neuropathy, and then we
9 can define a symptomatic small fiber neuropathy,
10 and it may simply be that we check the first box in
11 order to move onto the second box. But I think
12 defining a symptom as we sort of heard and I think
13 many of us are familiar with, once you've defined a
14 symptom, is it this symptom or that symptom? It
15 can quickly move in a different direction, but I
16 think the starting box has to be small fiber
17 neuropathy.
18 DR. DWORKIN: We only have 7 minutes left,
19 so let me continue to bark up the wrong tree.
20 Couldn't one imagine symptomatic criteria? I
21 realize there are other inclusion and exclusion 22 criteria, but something like patient needs to have

1 self-reported 2 of the following 5 symptoms; and
2 those sensory symptoms are pain; and/or pins and
3 needles, tingling; and/or self-reported,
4 patient-reported numbness; and/or itching; and/or, 5 I don't know, something else.
6 This is really the DSM-V model. So
7 criterion one is two, it could be three, it could
8 be one of the following five patient reported
9 symptoms. So we don't have enough time to come up
10 with that list now. This is why I left it to the
11 end, but is that something that Roy does tomorrow
12 afternoon starting at 1:00, that criterion one for
13 our diagnosis of small fiber sensory or mixed
14 peripheral neuropathy is a symptom list, and a
15 certain number of those symptoms is required?
16 Or as I thought I heard Eva 45 minutes ago,
17 maybe pain is so prevalent in this condition that
18 it could be something like patient must have pain
19 in the following distribution, and one of the
20 following other three parasthesia/dysesthesia type
21 symptoms, is that a model that's a reasonable one
22 for tomorrow afternoon's discussion? David?

DR. DWORKIN: And I completely agree with
you, distribution and duration, six months for example --

DR. HERRMANN: Absolutely.
DR. DWORKIN: -- they can't have developed
these symptoms a week ago. They should have had
them relatively stable for six months up.
Amanda, and then Chris.
DR. PELTIER: I think getting back to
Gordon's comment about what's the difference
between somebody with small fiber neuropathy versus
somebody with a little bit of vibration, I think
one of the things that you probably also Want to be careful about is what negatives you include in your criteria.

So for example, they have to have an absence of weakness, I believe, if you're going to make it a small fiber because it really should be a sensory-only disorder or primarily sensory and autonomic. But if they have any weakness, that should take them completely out because then you've automatically I think included patients that --

1 DR. SINGLETON: Like the absence of lower 2 motor neuron.
3 DR. PELTIER: Well, right. But I think that 4 you have to define how are you going to define
5 weakness, but they shouldn't be clinically week on
6 exam.
7 DR. DWORKIN: Chris?
8 DR. GIBBONS: I think you can take the
9 approach of the symptomatic criteria, but you need
10 to absolutely have qualifiers in there in addition.
11 But I think the classic example that I see in
12 practice is the bilateral plantar fasciitis. They
3 have the exact same complaints walking in the door,
14 but it is not a small fiber neuropathy and it's
15 clearly not treated as such, so you have to have
16 some criteria in there that either brings you in as
17 a loss of functional modality or excluding
18 something else.
19 DR. DWORKIN: Gordon? Maybe Gordon's going 20 to get the last word.
21 DR. SMITH: Oh, that would be a fresh
22 change. I want to answer Eva's question directly

1 and just say, yes. I don't think that one can make
2 a diagnosis of small fiber neuropathy or painful
3 neuropathy in the absence of symptoms. I think
4 your construct is a valid one, and it's all in the
5 way it's applied. And I think it's really
6 important. I can use diabetes as an example, that
7 many patients who have diabetes who do not even
8 have neuropathy have clear evidence of small fiber
9 injury and structural loss. We see it in CCM data.
10 We see it in INFD.
11 So if we have a patient with diabetes, let's
12 say, who does have numbness and tingling but no
13 pain, and the only abnormality on testing is a skin
14 biopsy, that's not the patient population we're
15 talking about. So I think it's important to use
16 these other structural measures of small fiber
7 neuropathy and our class taxonomy and diagnostic
18 criteria, but it really has to be founded in the
19 patient experience and their symptoms and
20 supporting signs.
21 The last point I want to make is we have
22 existing tools. We have the ISP definition of
neuropathic pain. That works pretty well, and I
think that's part of Roy's tree. That's one of the
limbs -- I don't know how the metaphor works, if
we're climbing up the limbs or what, but we have
that, too.
DR. DWORKIN: It's 4:15. The last comment from Anne Louise.

DR. OAKLANDER: Well, I think we don't have
enough data to know what should or should not be in the diagnostic criteria. So I think we should look at the literature. It's very important to do that.
What do the studies show about the symptoms of patients who do have small fiber neuropathy? And looking at our abstract, which I don't remember
because we got it in at quarter of 12 last night,
it's exam findings in patients with objectively validated small fiber; loss of pin, 70 percent; most common, appearance of the foot; but then touch, and half of them have some diminution and great toe vibration. So half of them have some diminution and great toe vibration on exam.
Patients who have objectively confirmed small fiber

Page 334
neuropathy, how could we exclude them? Fifteen percent had reduced great toe strength. I'm just saying, those were the data.

Adjournment
DR. DWORKIN: Thank you all very much. It's time for the email break before dinner. Dinner is here from 7 to 9 , and we will see you all then and look forward to a very lively discussion tomorrow
(Whereupon, at 4:17 p.m., the meeting was




Page 333
afternoon. adjourned.)

|  | 248:19;275:18 | 171:4 | 142:15;143:19; | adjourned (1) |
| :---: | :---: | :---: | :---: | :---: |
| \$ | abnormality (4) | achieve (1) | 144:19;145:6,9;149:5, | 334:11 |
|  |  | 216: | 17;152:11;158:5 | Adjournment (1) |
| \$100-exomes (1) | $280: 17 ; 332: 13$ | aching (1) | $161: 2 ; 162: 8 ; 166: 21$ | 334:4 |
| 233:9 $\mathbf{\$ 1 5 , 0 0 0 ~}$ | $\begin{array}{\|l\|} \hline \text { above (10) } \\ 55: 4 ; 263: 16 ; 283: 3 ; \end{array}$ | $\begin{array}{r} 125: 5 \\ \text { acid (3) } \end{array}$ | $\begin{aligned} & \text { 167:2;169:18;175:3; } \\ & \text { 177:14;179:10,22; } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { administer (2) } \\ 259: 15 ; 262: 10 \end{array}$ |
| $\begin{gathered} \mathbf{\$ 1 5 , 0 0 0}(\mathbf{1}) \\ 31: 22 \end{gathered}$ | $\begin{aligned} & 55: 4 ; 263: 16 ; 283: 3 \\ & 284: 15,17,18 ; 285: 7, \end{aligned}$ | $\begin{aligned} & \operatorname{acid}(3) \\ & 75: 19 ; 81: 4 ; 248: 21 \end{aligned}$ | $\begin{aligned} & 177: 14 ; 179: 10,22 \\ & \text { 183:22;193:10,19; } \end{aligned}$ | $\begin{array}{r} \text { 259:15;262:10 } \\ \text { administered (1) } \end{array}$ |
| \$30,000 (2) | 12,13;325:5 | acquired (4) | 199:21;209:18; | 293:12 |
| 21:14;22:1 | abruptly (1) | 104:2,3;105:13; | 210:16;211:1,8; | Administration (1) |
| [ | absence (7) | acquisition (1) | 218:6;219:17;221:11; | admitting (1) |
|  | 1;172:3 | 266:2 | 224:1;227:3;235:15; | 311:8 |
| [inaudible (18) | 240:22;324:12; | acronym (3) | 241:7;243:17,18; | ado (1) |
| 71:5;75:6,21,22; | 330:16;331:1;332:3 | 5:15;186:20;218:20 | 253:9;255:6,14;257:1; | 187:17 |
| 85:9;130:2;131:6,10, | $\begin{gathered} \text { absent (1) } \\ 62: 3 \end{gathered}$ | $\begin{array}{\|c} \text { acronyms (1) } \\ 12: 11 \end{array}$ | $\begin{aligned} & \text { 262:14;264:8;265:16; } \\ & \text { 266:5;278:7,20; } \end{aligned}$ | $\begin{gathered} \text { adults (1) } \\ 235: 10 \end{gathered}$ |
| $\begin{aligned} & 19,21 ; 138: 9,13 ; 206: 4 \\ & 215: 20 ; 245: 5,10 \end{aligned}$ | absolutely (14) | $\begin{gathered} 12: 11 \\ \text { across }(\mathbf{3 0}) \end{gathered}$ | $\begin{aligned} & \text { 266:5;278:7,20; } \\ & \text { 280:11,14;283:12 } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { 235:10 } \\ \text { advantage (1) } \end{array}$ |
| 252:18;288:16 | 44:5;52:10;113:7; | 28:21,21;30:15; | 290:4,18;291:14; | 165:8 |
| [inaudible] (2) | 128:4;141:17;186:11; | 37:12,17;39:10,14; | 293:3;303:20;306:2; | advantageous (1) |
| 132:4;245:12 | 294:11;311:1,1,4; | 42:1;47:8;81:1,13,22; | 309:18;310:2;314:20; | 76:9 |
| [indiscernible] (8) | 314:4;319:15;330:4 | 83:4,15;87:2,19; | 317:5;318:2,3,4 | advice (1) |
| 75:16;81:20;84:21; | $331: 10$ abstract (2) | $\begin{aligned} & 145: 12 ; 167: 6 ; 220: 2 \\ & 223: 4: 227: 8 \cdot 9: 255: 10 \end{aligned}$ | $\begin{gathered} \text { acuity (1) } \\ 329: 6 \end{gathered}$ | $251: 15$ |
| $\begin{aligned} & \text { 85:6;137:3;158:3; } \\ & 211: 13: 243: 7 \end{aligned}$ | $\begin{gathered} \text { abstract (2) } \\ \text { 191:17;333:1 } \end{gathered}$ | $\begin{aligned} & \text { 223:4;227:8,9;255:10; } \\ & \text { 257:21;262:11,20; } \end{aligned}$ | $\begin{gathered} 329: 6 \\ \text { acute }(16) \end{gathered}$ | $\begin{array}{\|c} \hline \text { advised (1) } \\ 158: 12 \end{array}$ |
| $[\mathrm{ph}](4)$ | abstracts (3) | 263:17;284:3;299:12; | 97:12;102:1,21; | advising (1) |
| 82:16;144:8,9; | 191:14,192:10,13 | 305:8 | 103:3;117:15;119:19; | 158:12 |
| 209:3 | $\begin{array}{\|c} \text { abundance (1) } \\ 145: 20 \end{array}$ | $\begin{array}{\|c} \mid a c t i o n ~(1) ~ \\ 324: 17 \end{array}$ | $\begin{aligned} & 126: 20 ; 127: 21 ; 130: 8 ; \\ & 146: 11 ; 174: 15 ; \end{aligned}$ | $\begin{gathered} \text { advisory (1) } \\ 57: 5 \end{gathered}$ |
| A | abuse (1) | actions (1) | 187:11;291:3;305:3 | advocacy (1) |
|  |  | 61 | 329:6,15 | 6:18 |
| A1c (1) | academia (1) | activating (1) | acutely (1) | advocate (3) |
| 47:22 | 13:12 | 23:16 | 133:21 | 142:9;293:3;312:15 |
| AAN (1) | academic (4) | active (4) | adaptive (1) | affect (4) |
| 6:14 | 18;85:14;113:8 | $09: 9 ; 113: 1$ | $7$ | $53: 5 ; 159: 19$ |
| $\begin{aligned} & \text { ABC (2) } \\ & 36: 8 ; 237: 10 \end{aligned}$ | accelerate (1) | $\begin{array}{r} \text { 136:6,12 } \\ \text { actively (1) } \end{array}$ | $\begin{array}{\|l\|} \text { add (12) } \\ 33: 15 ; 45: 5 ; 72: 7 ; \end{array}$ | affected (2) |
| ability (1) | $7: 5$ | 24:18 | 97:5;118:1;120:5; $152 \cdot 17 \cdot 153 \cdot 7 \cdot 163 \cdot 20$. | $57: 8 ; 60: 21$ |
| 224:12 | accents (1) | $\begin{array}{\|c\|} \hline \text { activities (5) } \\ 7: 13,21 ; 8: 3,2 \end{array}$ | $\begin{aligned} & 152: 17 ; 153: 7 ; 163: 20 ; \\ & 173: 2 ; 258: 14 ; 296: 17 \end{aligned}$ | $\begin{aligned} & \text { affecting (3) } \\ & 28: 1 ; 105: 5 ; 170: 22 \end{aligned}$ |
| able (5) 26:18;63:21;94:12 | accept (2) | $\begin{aligned} & : 13,2 \\ & 13: 16 \end{aligned}$ | added (2) | affects (2) |
| 244:6;280:3 | 100:20;134:4 | activity (2) | 36:10;111:19 | 44:11;45:3 |
| abnormal (47) | acceptable (2) | 230:11;310:18 | Addiction (5) | affiliation (1) |
| 36:2;43:15;55:2; | 248:14,15 | ACTTION (24) | 5:16;7:9,10;186:21; | 5:6 |
| $58: 20,22 ; 60: 20 ; 73: 4$ | accepted (2) | 4:14,17;5:9,13,14, | 187:6 | afield (1) |
| 79:11;80:10;86:3; | $213: 1 ; 224: 1$ | $\begin{aligned} & 15,18 ; 6: 5,7,10 ; 7: 2,12 \\ & 8: 7,22 ; 9: 15,17 ; 10: 3,4 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { addition (3) } \\ 9: 11 ; 286: 20 ; 331: 10 \end{array}$ | $\begin{array}{\|c\|} \hline \text { 232:7 } \\ \text { afternoon (6) } \end{array}$ |
| 87:13;95:1;102:19; | accepts (1) <br> 101:10 | $\begin{aligned} & 8: 7,22 ; 9: 15,17 ; 10: 3,4, \\ & 1017 \cdot 12 \cdot 1019 . \end{aligned}$ | 9:11;286:20;331:10 <br> additional (7) | afternoon (6) 52:12;186:5; |
| $195: 16,17,18,19$ | access (9) | $186: 11$ | $36: 9 ; 46: 4 ; 51: 2$ | 287:12;294:20; |
| 196:17;199:14; | 24:5;78:20;90:6 | ACTTION's (1) | 197:12;199:20; | 328:12;334:9 |
| 204:15;206:13,20; | 92:5,16,17;233:8; | 7:20 | 202:10;218:20 | afternoon's (1) |
| $209: 4 ; 210: 18 ; 219: 21$ | 265:21;271:16 | actual (3) | add-on (1) | 328:22 |
| 220:1,5;225:21;226:5, | accessible (1) | 139:3;140:4;223: | 155:10 | afterward (1) |
| 7,8;229:14;230:2,7; | 272:6 | actually (102) | address (10) | 194:5 |
| 234:15,16;236:21; | accomplish (3) | $8: 15 ; 19: 19 ; 28: 10$ | 7:15;12:4;13:8; <br> $166 \cdot 5 \cdot 174: 6 \cdot 237 \cdot 22$. | afterwards (1) |
| 242:7;258:7,9;263:14, | 15:10;167:3;253:18 according (2) | $\begin{aligned} & \text { 29:12,19;33:5;44:7, } \\ & \text { 19;47:17;53:14,15; } \end{aligned}$ | $\begin{aligned} & 166: 5 ; 174: 6 ; 237: 22 ; \\ & 239: 5 ; 321: 2 ; 325: 7,10 \end{aligned}$ | $\begin{gathered} \text { 23:21 } \\ \text { again (121) } \end{gathered}$ |
| 15;276:8;303:10 abnormalities (22) | according (2) 39:15;209:2 | 74:7;75:8,14,17;81:6, | ${ }^{\text {addressed (3) }}$ | 13:19;16:11;22:16, |
| 27:22;42:15,21,21, | account (3) | 11,18;85:2;90:15; | 11:22;49:6;288:8 | 22;29:20;34:5;41:17 |
| $22 ; 59: 19 ; 98: 6$ | 296:14;312:20; | 92:13;95:17;96:3,17, | addressing (4) | 42:7,9;45:5;50:12; |
| 207:13;223:10,22; | $316: 15$ | $\begin{aligned} & 18 ; 98: 1,21 ; 104: 5 ; \\ & 108: 7: 109: 5,6 ; 110: 1 \end{aligned}$ | $\begin{aligned} & 18: 17 ; 36: 13 ; 187: 4 \\ & 251: 4 \end{aligned}$ | $\begin{aligned} & 53: 19,21 ; 73: 18 ; 74: 18 \\ & \text { 81:14:82:10.21:83:7 } \end{aligned}$ |
| $224: 6 ; 226: 4 ; 228: 16$ | $\begin{array}{\|c} \text { accurate (1) } \\ 94: 10 \end{array}$ | $\begin{aligned} & \text { 108:7;109:5,6;110:1; } \\ & \text { 122:7,16;123:20; } \end{aligned}$ | 251:4 <br> adequate (2) | 81:14;82:10,21;83:7, <br> 9,13,15,18;95:13; |
| $\begin{aligned} & 17 ; 230: 6,17 ; 231: 6 \\ & \text { 236:18;238:1;240:14; } \end{aligned}$ |  | $131: 6 ; 135: 9 ; 140: 4$ |  | $98: 4 ; 101: 8,17 ; 102: 20$ |
| Min-U-Script® |  | A Matter of Record (301) 890-4188 |  | (1) \$100-exomes - again |

103:12;104:10,21;
106:2,6;107:2,4;
108:1,6;109:20;110:2, 21;112:2;113:2,14,19; 114:3,3,4,10,14;115:9, 12,19;116:4,22;
117:11;118:20;121:4; 122:19;125:21;
127:19;132:1;152:22; 158:17;188:17;193:5; 197:22;198:8;199:20;
200:3,13,15;201:7;
202:14;203:1;204:18;
206:5;213:4,5,9;
227:9;234:1,1;235:4, 10;236:3;241:18;
252:21;253:14;258:9;
259:17;260:5,18;
261:1,4,10,18,20;
262:8,15,22;263:4;
267:20;269:7;270:13,
15;271:1;272:13,17,
21;273:19;274:1;
276:3,4;285:16;301:8;
304:3,7;309:15;
311:17;320:22;322:18
against (8)
107:16;108:9;
115:14;137:22;149:9;
255:8;302:15;307:21
age (19)
28:21;33:11;38:1;
54:13,16,20,20;55:4;
64:14;127:10;221:12; 222:20;223:17;224:5, 10;232:20;245:21; 246:3;308:17
agencies (1) 6:19
agendas (1)
15:13
agent (2)
240:8;296:19
agent's (1)
250:22
aggregate (4) 49:5;87:21;224:20; 231:13
aggressive (1) 142:5
aging (4)
54:16;55:7;246:8;
266:17
ago (23)
4:15,16;12:20;
17:13;21:7,8,8;52:20;
77:22;78:18,19;95:3;
96:10;102:16;103:3;
106:11;122:13;134:3;
145:8;218:22;225:15; 328:16;330:6
agree (35)
47:5,20;48:11;55:8;

90:21;91:2;125:11; 127:8,19;128:8; 129:10,22;138:15; 150:9;155:22;156:5; 164:22;171:1;184:2; 219:3;245:15;246:22; 247:4,5;250:9;279:8, 19;282:13;299:13; 300:21;311:2;315:3; 320:12,22;330:1
agreement (6)
9:5,10;127:4;
250:11;276:12;289:22
agreements (2) 9:4,8
aha (1) 227:1
ahead (4)
150:8;276:10;
312:4;323:2
Ahmet (11)
77:13,18,19;126:15; 128:9;130:1;151:19;
158:11;164:6;169:21; 233:8
Ahmet's (4)
151:21;160:12;
178:22;329:3
aiming (1) 70:14
al (3) 122:6,17;133:17
Alan (1)
182:8
albuminocytologic (1)
102:2
alcohol (2)
232:1;244:1
aldose (2) 299:9,22
algorithm (1)
222:7
alignment (1)
197:10
all-comer (1)
222:22
all-comers (5)
32:18;79:17;86:19,
20;173:17
Allison (1)
6:6
allodynia (1) 271:20
allow (5)
22:1;121:2;249:20; 291:17;304:10
allowed (2) 56:5;311:21
allowing (3) 105:13;249:18; 250:3
allows (2)
116:5;298:17
almost (20)
11:12;19:3;51:5; 110:13;112:13; 140:22;159:14,16; 170:18;200:19;
203:11;218:22;221:9; 223:1;225:15;232:12; 257:3;262:20;292:11; 322:8
alone (4)
47:19,21;142:22;
219:13
along (1)
153:9
alpha (2)
61:17;230:11
ALS (3)
134:1,2;313:15
alter (1) 139:2
alterations (1) 102:6
alternative (1) 243:5
alternatives (1) 276:9
although (7) 204:6;214:14; 231:9;241:19;273:20; 277:12;317:1
always (12) 54:14;62:19;72:18; 73:9;100:15;152:10; 155:2;162:1;226:20; 247:14;261:3,19
Alzheimer's (1) 142:16
Amanda (5) 46:16;84:13;159:9; 318:1;330:8
ambivalence (1) 313:8
America (3) 95:4,5,7
Americans (4) 30:6,18,20;235:9
amino (2) 75:19;81:4
among (8) 80:15;95:8;188:20; 189:2;190:8;208:16; 213:3;322:18
amongst (5) 44:4;222:21; 230:18;308:19;326:1
amount (6)
160:1;191:8;
200:22;213:11;214:8; 285:13
amounts (1) 135:16
amplify (2) 48:4;50:16
amplitude (1) 278:8
amputation (1) 268:4
amputations (4)
267:19;268:17; 309:10,10
amyloid (1) 159:16
ANA (6) 119:1;127:22; 128:1;134:12;226:7,8
Analgesic (1) 5:15
analgesics (1) 187:8
analogy (7) 97:7;116:4;171:3,7; 306:4;318:3;320:5
analyses (1) 296:13
analysis (18) 33:10;43:2;44:13; 46:10;59:7,12;67:1; 70:17;72:5;88:17; 170:5;194:9;222:6; 234:13,17;266:4; 289:9,10
analyze (3) 59:9;70:11;75:2
analyzed (5) 69:9,12;75:2; 212:13;266:3
analyzing (2) 8:11;169:11
anatomic (1) 326:11
ancillary (1) 322:13
and/or (4) 328:2,3,4,4
anecdotal (1) 93:21
anesthesia (1) 7:8
anesthesiology (4) 4:12;6:15;9:21; 187:19
Anesthetic (1) 5:16
animal (3) 28:5;35:3;192:6
ankle (1) 272:1
Ann (2) 111:2;238:20
Annals (2) 64:22;72:9
Anne (23) 111:15;112:2; 115:19;122:18; 128:10;130:3,4;131:4; 138:5;142:12;146:5;

182:19;183:20;
184:17;218:2;228:9;
244:14;245:18;
255:14;301:7;303:17;
313:6;333:7
announced (1) 186:19
announcement (2)
92:15;186:22
answered (4)
25:16;266:19,21;
288:2
antagonist (3)
152:3,6,13
antenna (1)
247:2
anti (1)
212:16
antibodies (15)
98:9;105:4,5;
107:16,20,21;108:9;
118:21,22;119:1,22;
120:18;127:15;
133:10;249:9
antibody (2)
114:6;127:14
anti-inflammatory (2)
124:6;125:21
antinuclear (1)
127:14
anti-TNF (1) 110:16
Antoine (1) 107:12
anxiety (1) 316:16
anymore (1) 99:4
apologize (2) 176:8,9
apparently (4) 146:8,10;187:10; 289:16
appear (2) 18:14;92:21
appearance (1) 333:18
appears (1) 220:16
Applause (4) 71:2;214:17; 215:17;286:13
Applause_(1) 55:19
apple (1) 265:3
applicable (3) 86:22;289:17; 325:15
applied (4) 193:2;305:8; 324:11;332:5
applies (1)

| 248:16 | 324:21 | 227:5,5 | 196:18,20;197:15; | 217:2;244:6;257:1; |
| :---: | :---: | :---: | :---: | :---: |
| apply (2) | articles (5) | ataxic (1) | 202:10,14,18;228:11; | 280:14;282:15;286:2; |
| 265:6;277:8 | 9:19;22:4;221:8,10; | 227:20 | 254:19;255:17;256:6, | 300:10;301:7;312:12; |
| appreciate (2) | 254:3 | attack | 259:8,18;260:2 | 318:22;321:11;330:9 |
| 186:15;290:9 | asiatic | 99:1 | 61:5;264:1,3,12,15; | background (10) |
| approach (14) | 124:9;125:2 | attempt (2) | 265:2,9;283:16;284:2, | 57:1;69:17,20;70:6; |
| 13:10;34:16;70:5; | aside (2) | 29:13;122: | 3;285:16,17,18,21; | 74:20;87:7;89:3; |
| 74:11;139:21;177:5 | 193:4;294:2 | attempted (1) | 292:4,13,14;302:2,5; | 148:10;163:7;169:22 |
| 241:18;258:6;273:8; | aspect (10) | 21:20 | 05:5;307:18,22; | backgrounds (1) |
| 306:3;317:4;319:16, | 26:7;93:14;124:16 | attempting (2) | 308:15;309:5;318:20; | 88:2 |
| 21;331:9 | 138:3;168:3;183:6,18; | 92:22;121:19 | 330:20 | bad (6) |
| approached (2) | 209:6;301:5,17 | attempts (1) | autonomics (1) | 52:8;162:15; |
| 78:18;326:15 | aspects (4) | 98:22 | 302:21 | 167:18;272:12; |
| approaches (4) | 25:11;35:20;93:11 | attenti | autosomal (2) | 274:14,20 |
| 14:18;139:17; | 312:14 | 107:2;130:14; | 63:5,8 | balance (3) |
| 172:2;211:3 | assert (1) | 169:14;214:16;226:17 | availability (3) | 17:22;182:18; |
| approaching (2) | 293:5 | attraction (1) | 21:3;273:22;276:17 | 278:22 |
| 153:20,20 | assess (3) | 218:14 | available (14) | balanced (1) |
| appropriate (6) | 21:3;23:7;157:6 | attributab | 24:11;87:9;131:8 | 131:7 |
| 196:6;206:9; | assessed (7) | 89:10 | 144:8;147:21;265:15, | balancing (1) |
| 241:10;249:17;265:6; | 21:7;189:1;197:6 | attribute (2) | 20,22,22;266:9; | 184:10 |
| 272:20 | 18,20;198:17;316:3 | 241:10;308 | 271:15;273:14,16; | bands (1) |
| appropriately (1) | assessing (3) | attributing (1) | 276:17 | 109:19 |
| $274: 15$ | 11:14;190:19;213 | 235:4 | avoid (1) | banking (1) |
| approval (1) | assessment (3) | audience (12) | 93:15 | 244:5 |
| 141:3 | 256:13,14;317:2 | 4:6;14:13;19:1,22 | aware (4) | bankrupt (1) |
| approved (2) | assignment (1) | 20:10;24:16;121:22; | 19:21; $20: 3 ; 238: 15$ | 178:21 |
| 12:21;160:9 | 70:8 | 143:19;174:6;248:12; | 248:18 | bariatric (3) |
| area (5) | assistance | 250:15;309:19 | awareness | 236:15,18,22 |
| 18:10,11;34:10 | 24:11 | auspices (2) | 12:20 | bark (1) |
| 126:17;148:12 | assistant (1) | 4:14;9:15 | away (3) | 327:19 |
| areas (6) | 187:19 | author (1) | 49:17;53:9;316:4 | barking (2) |
| $7: 7,12 ; 15: 16$ | associate (1) | 280:15 | axon (1) | 300:8,10 |
| $239: 22 ; 272: 22 ; 283: 15$ | 252:16 | authors (1) | 196:16 | Barohn's (1) |
| argue (11) | associated (25) | 149:2 | axonal (23) | 218:5 |
| 65:4;90:15;102:8; | 5:1;16:13,20;17:5; | auto (5) | $12: 22 ; 13: 4,7 ; 65: 1$ | barrier (2) |
| 110:19;114:3;129:3; | 28:11;29:16;31:15 | 157:13;229:8; | $66: 5,10,12,13 ; 78: 6$ | 20:10;266:6 |
| 136:6;142:19;164:9, | 37:2,11,16,19;39:4; | 231:11,13;309:10 | 101:3;176:19;218:5; | based (25) |
| 16;165:1 | $57: 16,17 ; 61: 11 ; 98: 10$ | autoantibodies (7) | $224: 21 ; 225: 5 ; 232: 14$ | $18: 1 ; 50: 10,11 ; 70: 4$ |
| argued (1) | $119: 5 ; 126: 10,22$ | 98:8;101:6;107:12; | $235: 3 ; 236: 9,10$ | $74: 12,21 ; 76: 8 ; 84: 3,4$ |
| 164:6 | 145:1;147:17;172:1; | 115:10,16;175:2,9 | 239:12,13,20;242:10; | 98:1;154:5;169:19; |
| argues (2) | 203:10;288:12;326:21 | autoantigens (1) | 248:3 | 223:20;228:10;239:8; |
| 102:11;107:3 | association (19) | 175:6 |  | 240:7;244:19;250:5; |
| $\underset{\text { arguing (5) }}{ }$ | 32:7;36:16;102:3; | autoimmune (20) | B | 256:12;284:14;290:8; |
| $\begin{aligned} & \text { 108:1;113:19; } \\ & 120: 3 ; 126: 17 ; 242: 21 \end{aligned}$ | $\begin{aligned} & 133: 20 ; 189: 4,10,10, \\ & 13,13,14,15,18,21 ; \end{aligned}$ | $\begin{aligned} & 78: 12 ; 98: 10 ; 101: 3 \\ & \text { 106:8,22;108:3;109:2; } \end{aligned}$ | 12 (9) | $\begin{aligned} & \text { 298:8;313:16,16; } \\ & 316: 17 \end{aligned}$ |
| arise (1) | 190:7;194:17,18; | 110:5;112:20;116:6,8, | 17:12;231:8,22; | baseline (2) |
| 135:2 | 209:21;296:22;297:12 | 9,11;128:5;146:8,10; | 238:16;239:4;243:17; | 293:11,13 |
| armadillos (1) | associations (4) | 177:12;240:15; | 248:20;249:22;250:3 | bases (1) |
| 39:21 | 151:6,10;188:11; | 244:18;252:6 | B6 (4) | 240:1 |
| arms (2) | 200:6 | autoimmunity (3) | 226:21;227:10,1 | basic (7) |
| 60:16,18 | assume (2) | 123:5,6;240:20 | 16 | 32:19;1 |
| around (17) | 92:4;138:16 | automatically (1) | back (46) | 139:19;262:17; |
| $15: 22 ; 21: 2 ; 27: 16$ | assuming (2) | 330:22 | $20: 15 ; 26: 3 ; 29: 13$ | 301:20;322:10,22 |
| 30:19;43:20;54:15; | 170:7,9 | autonomic (69) | 43:5,21;65:14;71:7; | basically (17) |
| 71:11,21;74:4;132:7; | assumption (1) | 12:5;19:12;22:3,4, | $72: 8 ; 81: 17 ; 85: 3,17$ | $25: 17 ; 27: 12 ; 31: 19$ |
| 149:7;160:6;169:12; | $285: 1$ | 5;27:22;34:21;40:8; | 86:6,7,8;114:14; | 36:9;79:5;80:21; |
| 203:7;223:13;234:3; | assumptions (1) | 52:22;57:14;60:13; | 116:3;120:16;132:5; | 81:12;82:21;84:3; |
| 250:12 | 132:18 | 64:8,9,12;100:10,15; | 133:1;135:12;141:10; | 89:12;106:14;113:10; |
| arranged (1) | asymptomatic (1) | 116:16;118:1,2; | 144:5;149:7;159:19; | 180:6;192:12;194:10; |
| 263:17 | 53:17 | 119:20;120:17;121:8; | 160:5,12;166:21; | 198:12;213:2 |
| article (3) | ataxia (4) | 131:22;151:9;174:22; | 171:16,18;180:4,16; | basics (1) |
| 238:21;241:4; | 114:1;219:15; | 178:15;195:17,18,22; | 182:14;185:14;191:3; | 182:14 |


| basis (6) | 36:1;38:9;112:19,22; | biomarker (3) | blockers (3) | 194:21;197:17 |
| :---: | :---: | :---: | :---: | :---: |
| 6:5;110:21;127:17; | 113:2,7;115:12;144:7; | 78:16;138:10; | 155:19;157:13; | boy (1) |
| 233:12;257:14;269:3 | 155:5;171:6;212:9; | 150:11 | 164:5 | 325:4 |
| bat (1) | 275:7,9;277:14;287:6; | biomarkers (12) | blocking (1) | brain (1) |
| 134:13 | 320:20;321:4 | 18:20,20;122:6,8; | 129:18 | 48:10 |
| battery (3) | bet (1) | 123:8,21;180:8;181:3; | blocks (2) | branch (4) |
| 195:22;196:20; | 134:9 | 184:19,20;278:5,17 | 104:15;155: | 254:5;303:7; |
| 260:1 | beta (1) | biopsied (1) | blood (14) | 314:21;315:7 |
| Bayesian (1) | 61:18 | 111:14 | 78:16,20;79:6,20; | brand (1) |
| 211:21 | better (33) | biopsies (35) | 84:22;116:10;122:6; | 299:8 |
| Bayview (1) | 33:20;76:17;98:18 | 20:1;21:3;43:15; | 128:7;147:2;184:5; | brave (1) |
| 178:16 | 103:6;112:16;113:9; | 55:2;78:15;79:11,11, | 226:8;251:6,11,13 | 221:9 |
| beautiful (5) | 114:1;121:3,13; | 13;80:10;95:2;98:2; | blue (2) | Brazil (1) |
| 18:5;45:15;48:5; | 128:21;129:5;131:3; | 103:5;105:10,11,11, | 189:13;259:20 | 131:1 |
| 72:9;323:5 | 135:6;136:8,11; | 12;106:11;114:19,19; | blur (1) | break (4) |
| beautifully (1) | 142:10;143:2;146:14, | 124:7;174:19;176:21; | 320:15 | 92:3;99:12;117:5; |
| 46:11 | 18;149:18;150:3; | 181:11,21;183:11; | blurred (1) | 334:6 |
| became (1) | 155:19;176:6;179:15, | 198:8;200:8,10;201:2; | 184:15 | breaking (1) |
| 215:15 | 17;213:16;221:20; | 204:7;206:19,22; | BMS (7) | 320:17 |
| become (5) | 222:2;269:1;297:6; | 212:10,12,13 | 79:5,15;84:3;152: | breast (1) |
| 122:22;146:11; | 303:4;318:4;325:4 | biopsy (58) | 158:12;162:2,3 | 96:10 |
| 149:18;150:2;179: | Beyond (2) | 19:19;20:7,14,18, | BMS' (1) | Brian (3) |
| becomes (1) | 181:16;217:15 | 20,21;21:9;48:15; | 86:21 | 36:7;48:5;50:12 |
| 127:11 | bias (15) | 58:22;73:4;86:3; | board (3) | Brian's (1) |
| becoming (2) | 44:11;45:3;49:18; | 90:18;94:20;102:19; | 57:5;95:10;120:20 | 237:10 |
| 248:18;324:14 | 73:18;80:15;203:3,10; | 115:2;122:7;124:13; | Bob (13) | brief (2) |
| bed (3) | 210:9;213:10;229:12; | 126:8;129:12,16; | 4:10;5:3;6:1;10:22; | 164:3;308:1 |
| 136:5,11;142:3 | 231:1;252:12;266:14; | 130:18;132:1,2;150:3; | 12:17,18;13:2,17; | briefly (6) |
| bedside (1) | 267:1;268:19 | 176:4,12,18;181:7; | 186:12,14;218:15; | 12:8;13:3,15; |
| 21:19 | biased (1) | 190:7;193:14;194:14; | 304:18;314:19 | 189:17;230:12,13 |
| began (4) | 145:10 | 195:19;196:11;197:7; | body (3) | bright (1) |
| 52:19;96:15 | biases (3) | 198:3,5;200:18,20,20; | 60:19;302:14; | 321:20 |
| 106:12;107:1 | 227:14;229:5 | 204:9,10;205:18; | 308:20 | bring (8) |
| begin (8) | 268:21 | 206:10;210:8;212:18; | bone (4) | 44:10;52:4;130:6 |
| 15:11,18;36:13; | big (16) | 213:6;228:11,11; | 185:7,17;302:8,9 | 169:14;190:21;269:8; |
| 53:4;92:8;100:22 | 56:17;88:10;154 | 230:2,5;278:9,13; | books (1) | 282:15;308:10 |
| 128:3;134:19 | 157:18;158:22;163:9; | 279:6;280:18;297:8; | 91:5 | brings (3) |
| beginning (9) | 174:7,22;179:20; | 310:10;322:16;332:14 | boring (1) | 24:21;95:21;331:16 |
| 34:1;39:19;51:15; | 211:16;225:8;258:10; | bit (47) | 253:3 | Bristol-Meyers-Squibb (1) |
| 94:8;102:17;139:18; | 266:22;270:15; | 9:13,13;25:10; | Borussia (1) | 78:19 |
| 190:12;248:2,13 | 292:12;296:10 | 34:20;57:1;74:17; | 214:14 | broad (6) |
| begs (1) | bigger (4) | 79:16;97:19;98:11,20; | both (29) | 141:20;164:13; |
| 216:10 | 155:17,20;264:11; | 99:4;100:18;117:8; | 9:9;12:4;31:16 | 187:4;248:22;319:3,6 |
| behalf (1) | 283:12 | 121:9;141:10,21; | 35:7;36:4;52:22; | broader (3) |
| 5:9 | bilateral (1) | 149:7;171:20;179:3; | 63:20;88:16,17;95:4, | 95:21;153:22;322:4 |
| behind (5) | 331:12 | 191:9;213:16;214:9; | 15;108:1;110:17; | broadest (1) |
| 241:22;250:22; | billion (2) | 216:7;217:11;219:17; | 116:17;141:7;146:1; | 329:13 |
| 303:13;315:13;320:10 | 187:2,3 | 232:7;233:21;245:2; | 161:12;165:10;175:7; | broadly (4) |
| BELL (6) | bind (1) | 250:4;253:4;254:15; | 181:1;216:7;229:6; | 265:6;266:6;309:3; |
| 76:1,3,17;77:3,8; | 175:6 | 255:9;256:8;259:7; | 256:10;262:5;290:20; | 325:14 |
| 138:14 | bio (1) | 262:2,4,9;269:15; | 292:5;307:18,22; | broke (1) |
| belongs (1) | 163:2 | 272:10;276:4;284:11; | 326:2 | 123:8 |
| 215:6 | biobanking (1) | 286:3;289:11;297:11; | bother (1) | broken (1) |
| below (1) | 244:2 | 320:17;329:18;330:12 | 259:14 | 33:2 |
| 283:3 | Biogen (2) | black (2) | bottom (1) | brother (3) |
| benefit (3) | 57:5;76:3 | 30:20;230:14 | 43:8 | 60:21;61:1;63:15 |
| 114:10;141:2;238:2 | bioinformatician (1) | block (8) | bound (1) | brought (1) |
| benign (2) | 163:2 | 22:11;76:19; | 136:5 | 154:5 |
| 19:21;20:4 | biologist (1) | 103:19;104:7;154:11; | boundaries (2) | brushing (2) |
| besides (1) | 162:18 | 262:6,9;276:22 | 52:1;224:15 | 260:12;267:13 |
| 160:14 | biology (6) | blocker (6) | box (3) | bucket (1) |
| best (20) | 27:1;35:8,9;56:8; | 65:13;70:16;76:21, | 327:10,11,16 | 329:17 |
| 23:13;31:12;32:14; | 74:13;301:1 | 22;155:8;242:3 | boxes (2) | budget (1) |


| $187: 1$ |
| :--- |
| build (3) |
| $116: 12 ; 119: 10 ;$ |
| $306: 4$ |
| building (1) |
| $14: 16$ |
| built (2) |
| 193:1;279:13 |
| bullet (1) |
| $112: 7$ |
| bullseye (2) |
| $120: 4,21$ |
| bunch (2) |
| $113: 14 ; 231: 13$ |
| burden $(\mathbf{6})$ |
| $30: 10 ; 31: 13 ; 39: 2,7 ;$ |
| $49: 3,17$ |
| bureau $(\mathbf{1})$ |
| $162: 16$ |
| burning $(\mathbf{1 6})$ |
| $90: 10 ; 117: 21 ;$ |
| $120: 9,15 ; 125: 4,4,15$, |
| $16 ; 195: 14 ; 261: 7 ;$ |
| $267: 18 ; 310: 5,9,15 ;$ |
| $318: 21 ; 325: 12$ |
| business $(\mathbf{4})$ |
| $20: 12 ; 22: 17 ; 76: 5 ;$ |
| $139: 1$ |
| busy $(3)$ |
| $225: 19 ; 228: 12 ;$ |
| $269: 16$ |
| buy $(\mathbf{1})$ |
| $103: 1$ |
| by-in-large |
| $223: 21$ | C

calcaneal (1) 311:12
calcium (2) 65:16;242:10
calf (3) 115:1,3,14
call (12) 54:20;66:15,16; 74:6;78:3;99:3;194:6; 201:16;218:11,19; 232:8;311:21
Callaghan (3) 36:7;48:5;50:12
called (10) 16:12;47:13,14; 102:20;124:18;125:6; 193:18,22;197:22; 200:10
calls (2) 243:11;301:5
came (9) 36:15;74:14;81:5; 85:18;123:6;145:11; 202:7;223:4;239:2
Campagnolo (1)

192:11
campylobacter (1) 101:2
can (231)
11:4;17:13;20:22; 21:14,22;23:13;25:7, 7;30:22;33:15;34:5; 35:6,10;42:19;45:22; 46:2,5;48:11;49:19; 50:3,16;55:4;57:9,16; 59:6,8,12,15,15,16,22;
60:3,17,19;61:7,22;
62:11;63:6;64:2,22;
65:4,13;66:8;67:11; 68:8,10;69:10;70:21; 74:15,21;75:4;76:1; 77:10;85:8;86:6; 90:12;93:5;94:5; 96:22;97:19,19;98:16; 99:1,3,16;104:14,17; 108:17;109:1;117:7; 118:8,11,12,15,16; 121:1,15,22;129:9,13; 133:5,9;135:15,20; 136:3;141:1,2;142:8; 143:3;145:3;146:7; 150:3,3,17;152:16; 153:3,8;155:4;157:10; 158:4;162:11;165:7; 167:10;168:9;171:2; 173:2;176:6;177:3; 178:13;180:13,13,14, 19;181:11,12,15; 182:4;183:1,11,17; 184:4,12;186:20; 188:19;191:8;194:6,7; 196:4,12;197:3; 198:16,18;199:3; 200:7,18;201:7,16; 202:11,20;205:10; 207:4,7,10;208:16; 213:17;215:4;217:18; 218:15;220:2;221:2, 16;222:19;225:8; 228:12,14;229:2,17; 230:4,9;232:3;233:16; 239:9;241:20;242:8,9; 244:8,14;245:6; 247:11,13;252:13; 254:2,4,15;255:12; 258:12;259:2;260:8; 261:14;264:5;265:22; 267:7;268:2;271:15; 272:5;275:4;278:5; 279:7;280:22;282:10; 283:4;288:7;289:2; 291:8,10;294:1; 296:17;297:18;298:6; 299:16;302:17; 306:18,19;307:14,18, 18,18;308:18;309:2; 310:6;312:19;313:12; 314:5;315:3,3;316:3;

317:19;320:14,21; 321:1,5,11;324:19; 325:2,6;327:8,9,15; 331:8;332:1,6
cancer (6)
28:10;38:11,16,18, 18;96:11
candidates (2)
236:17,22
capable (2)
11:14;136:22
capsaicin (1) 135:13
capture (2) 243:4;280:3
captured (1) 240:17
captures (2) 239:1;241:6 carbamezapine (1) 65:13
cardiovascular (1) 34:19
care (5) 6:5;31:17;44:13; 45:20;324:16
careful (10) 26:11;45:19;66:20; 179:13;234:21;239:8; 240:21;296:7;323:6; 330:14
carefully (15) 16:13;33:18;44:12; 81:12;85:9,14;90:7; 146:20;149:12;161:7, 17;230:1;234:9; 280:5;321:22
carrot (1) 151:14
carry (1) 252:13
carrying (1) 74:19
case (36) 15:5;16:8;24:8; 50:4;74:17;75:14; 93:21;94:21;96:3; 102:15,15,22;104:13; 113:15,16,21;146:19; 153:13;156:18;193:8; 197:20;211:16;254:5; 263:11;266:6;274:4; 276:13;281:12; 282:16;286:11; 301:20;307:5;315:15; 316:2,18;319:6
cases (14) 39:17,18;95:15; 106:1;108:17;110:12; 119:18;136:4;140:13; 149:4,5;223:3,21; 262:18
cast (3)

137:16;254:2; 285:19
categories (8)
78:8;82:21;117:7;
134:15;164:13;
192:15;211:4;257:5
categorization (1) 223:20
categorize (1) 237:7
category (6)
80:6,19;119:7;
192:19;313:13;315:18
causal (1)
16:21
causation (1) 235:5
causative (5) 29:15,17;32:7;
221:3;248:8
cause (22) 17:11;36:19,22; 38:6;39:11;40:16; 41:2,4;43:3;44:16,20; 46:16,20;64:11,19; 66:6,12;99:7;234:4; 241:13;243:5;252:12
caused (4) 16:14;69:17;96:17; 220:22
causes (28)
26:5;28:8,12;29:1;
30:2;37:14;40:21; 47:8;49:9,12;50:5; 57:18;58:2;69:18; 96:17;147:5;196:2; 208:3;241:12;242:1, 22;243:1,2;248:9; 307:8;311:13;320:6, 14
causing (3) 224:14;225:2;232:2
cautious (8)
39:22;45:2;133:22; 134:9;135:22;227:22; 235:3;293:2
caveat (1) 297:10
CCM (5) 197:7;213:8;214:7; 310:11;332:9
CDC (1) 6:20
ceiling (1) 279:16
C-elevated (1) 98:5
celiac (6) 124:21;231:14,16; 249:9,11,16
celiac-mediated (1) 113:22
cell (1)

23:15
cell-based (1)
301:21
cells (10)
65:12,18,21;66:3;
109:17;118:17;124:4;
158:8;183:10;200:5
center (6)
45:11;87:7;113:8;
145:12;168:4;269:4
centers (5)
44:22;45:20;85:15;
87:19;273:21
central (4)
138:8;154:14;
156:18;157:19
cerebellar (1)
114:1
certain (17) 54:17,18;55:4; 66:14;135:18;146:17; 148:9;193:2;205:7; 208:2;279:3;284:17; 285:1,12;305:2;315:3; 328:15
certainly (9)
29:7;51:6;52:5; 222:10;226:17; 239:22;246:18;249:2; 320:15
certainty (1) 314:5
cetera (21) 6:15;67:18;73:19; 164:15;177:13; 187:13,13;189:8; 193:15;194:15; 197:10,11,11;202:11; 208:15;223:8,9; 260:14;275:1;318:17; 322:21
CGRB (1) 302:9
CGRP (1) 302:6
chagrined (1) 253:1
chair (2) 215:15,22
chairman (1) 92:12
chairman's (1) 151:18
challenge (8) 122:20;158:18,22; 174:7;210:12;241:15; 276:8;317:15
challenged (1) 18:13
challenges (8)
40:2;49:20;74:2;
154:1;260:20;265:14; 288:19;308:8

| challenging (9) | 167:5;168:5;19 | 146:16 | 18,20;12:15,17;14:4, | 182:9;190:2 |
| :---: | :---: | :---: | :---: | :---: |
| 37:14;98:15; | characterizes (1) | circle (2) | 7;15:2,6;17:14,16,22; | closure (1) |
| 160:21;232:3;239:9; | 206:16 | 323:4;327 | 18:19;19:10,20;20:11; | 184:17 |
| 253:14;273:10; | Charcot-Marie-Tooth (2) | circulating ( | 21:6,12,15,16,17; | clue (1) |
| 279:20;317:16 | 319:8,9 | 160:6 | 22:19;23:8,9;30:8; | 145:13 |
| chance (3) | charge (2) | circumferentially (1) | 31:17;35:4;48:17,1 | clumsier |
| 84:15;172:10 | 15.78 | 228:5 | 53:6;54:17;55:10; | 277:13 |
| 297:21 | chart (1) | circums | 58:19;60:21;61:5 | cluster (1) |
| change (27) | 20 | 6:1 | 67:5;74:13;80:3; | 74:21 |
| 12:1,2;59:15,16; | cheap (1) | clamp (3) | 87:12;95:2;97:6; | clustering (1) |
| 72:20,21;81: | 63:10 | 59:7,9,1 | 100:9;101:16;107:15; | 169:22 |
| 129:14;13 | chea | , | 108:2;117:11;118:7; | CMT (1) |
| 136:3;139:8;147:1 | 90:18 | 139:11;175:16 | 125:2;127:16;133:8; | 159:19 |
| 17;177:19;181:12; | check | clari | 135:3;137:17;138:12; | Cochrane (1) |
| 182:2;184:1,21; | 73:3;162:17,19 | 207:10 | 146:2;147:13,17; | 7:17 |
| 256:17;282:11;291:5, | 327:10 | clarity (5) | 148:17;159:14;165:2; | code (2) |
| 13,15;293:11;295:3; | checking | 141:5;171:19 | 171:1,12;172:4,19,21; | 24:5;194:16 |
| 331:22 | 262:11 | 272:4;277:1 | 173:13;174:11; | coded (3) |
| changed (2) | checks (1) | class (2) | 180:13;181:13;182:3; | 40:16;192:12 |
| 11:20;135:7 | 162:18 | 7:16;332 | 187:11;190:17; | codes (1) |
| changes (23) | chemothe | classic (4) | 191:18;193:11; | 47:18 |
| 72:20;81:4;9 | 38:19,22;39:4; | 100:19;101:2 | 203:12,16,18,21; | coding (4) |
| 104:2;120:1;122:10, | 96:10;277:11 | 309:6;331:11 | 204:9;205:3,3;206:15; | 58:10;75:1;81:3 |
| 11;135:14,15,17; | chemotherapy-induced (5) | classification (2) | 209:10;216:18;217:1, | 189:9 |
| 175:21;176:4,12; | 14:4,8;38:5;78:9; | 82:22;89:15 | 6;219:9,19;224:1; | co-director (1) |
| 184:8,12;209:13; | 192:3 | classified | 226:17;233:6,11; | 13:9 |
| 261:15;280:3,20; | ches |  | 234:6;236:3;237 | coffee (4) |
| 291:10,14;292:15 | 120:16;12 | cl | 238:21;239:10;240:3; | 252:14;260:13 |
| 297:1 | children | 279 | 243:4;244:20;247:17, | 267:14;282: |
| changing (1) | 108:7;112:3 | cleanest ( | 17,18,20,21;248:11, | cognition (1) |
| 35:9 | choose (1) | 160:15 | 13;249:4,13,20; | 304:3 |
| channel (52) | 141:16 | clear (30) | 250:20,22;265:2 | cognitive (1) |
| 17:7;59:10,14;60 | chose (1) | 43:1;57: | 278:3;281:7;282:3; | 213:22 |
| 61:8,17,22;62:3,10 | 138:6 | 64:5;99:14;126:2 | 283:21,22;289:5,6; | cohort (24) |
| 65:13;66:2;67:10; | chosen (1) | 136:18;140:19; | 290:7,19;292:17,22; | 21:12;65:1;78:8,17; |
| 70:16;71:13,17;72:1, | 16:13 | 148:10;171:11 | 293:13,22;294:19,21; | 79:9,13,18,22;80:11, |
| 4,13,15;75:9,22; | Chris (22) | 173:20;177:12 | 298:13;299:12; | 18,21;82:2,7,13;83:8; |
| 76:13,16;82:11;84:4; | 13:22;27:20;37 | 184:11;185:15; | 301:15;311:5;312:3, | 85:4;86:12;89:9,16; |
| 99:14;105:2,7;129:18; | 52:17;53:12;73:7 | 201:18;212:6;227:17; | 22;313:2,17;315:12; | 159:8;168:11;219:10; |
| 151:16;152:3,6,13; | 129:15;132:7;134:18; | 232:20;251:9;256:7; | 320:16;324:2,5,9,11, | 220:10;236:16 |
| 154:14;155:8;160:7, | 164:2;166:20;252:15; | 259:15;260:10; | 13,15;325:1 | cohorts (2) |
| 20;161:1,18;164:5; | 277:5;280:11;286:12; | 271:17;272:2;273: | clinically (14) | 143:19;203:9 |
| 167:12,14;171:2,8,10; | 290:16;293:6;296:9; | 12;279:8;304:22; | 101:8,12;105:8 | cold (12) |
| 230:12;233:4;241:2; | 304:16;308:4;330:8; | 314:7;332:8 | 107:14;117:18 | 197:9;198:20,2 |
| 242:3,7;244:7;252:9 | 331:7 | clear-cut (2) | 141:22;143:11; | 99:1,3;207:3,8 |
| channelopathies (3) | Christo | 165:6;207: | 147:15;160:1;168:5; | 208:18;210:7;213:15, |
| 40:10;49:12;51:4 | 252:20 | clearly (23) | 220:10;237:5;240:5; | 19;274:10 |
| channels (19) | Chromoc | 37:11;39:22;52 | 331:5 | collaboration (2) |
| 41:2;58:6,6;66:10; |  | 74:17;87:16;117:1,8 | clinician (3) | 7:18;77:22 |
| 68:6;69:21;70:3;72:3 | chromosome (1) | 158:17;167:8;170:9; | 14:1;90:8;113:8 | colleagues (4) |
| 75:1;76:6,10;77:6; | 58.8 | 179:5;205:19;221:19; | clinician-oriented (1) | 32:16;175:4;216:2; |
| 81:2;83:4;87:15; | chronic (12) | 226:9;240:20;254:4; | 253: | 217:5 |
| 99:15;153:2,6;231:10 | 112:9,10,19;147:8 | 284:12;286:6;302:4; | clinicians (3) | collect (4) |
| character (1) | 187:11;218:5;224:20; | 308:15;309:9;327:5; | 94:4;97:11;164:9 | 78:13,16,20;84:15 |
| 23:1 | 232:14;236:9,10; | 331:15 | clinics (1) | collected (1) |
| characteristics (3) | 305:1;329:6 | climbing (2) | 18:14 | 131:9 |
| 166:17;193:14,18 | CIDP (12) | 314:3;333: | close (1) | collecting (1) |
| characterization (1) | 97:22;105:17 | clinic (7) | 85:18 | 84:22 |
| 203:14 | 106:3;108:12,22; | 130:16;161:1 | closely (2) | Collins (1) |
| characterize (2) | 109:8;112:20,21; | 175:4;225:19;231:4; | 142:16;190:9 | 186:18 |
| 35:7;207:21 | 113:9;129:5;133:9; | 277:8;315:22 | closer (1) | color (3) |
| characterized (6) | 184:14 | Clinical (148) | 117:3 | 189:9;192:12; |
| 31:12,20;33:20; | CIDP-like (1) | 5:16;8:10,10,11,14, | closest (2) | 194:16 |

colorful (2)
217:4;235:16
column (2)
28:2;95:5
columns (2) 200:7;270:10
combination (4) 32:1;57:13;58:20; 263:15
combinations (1) 16:10
combine (2) 66:8;211:15
coming (11) 72:8;90:16;149:7; 158:18;162:6;181:2; 261:3;263:17;269:18; 288:1;323:4
command (1) 124:18
comment (21) 72:8;74:5;91:11; 138:15;148:14;151:3; 162:11;167:10;168:3; 178:13;179:1;184:18; 208:21;215:10;296:5; 297:21;309:20;313:6; 314:20;330:10;333:6
commented (2) 168:7;233:3
comments (6) 150:22;159:10; 287:11;288:3;309:18; 312:12
commercial (4) 162:16;163:10; 167:6;170:10
common (36) 16:19,21;26:5;29:6; 36:22;38:6;39:11; 44:19;48:17;50:21; 110:10,13;127:10,11; 160:15;161:6,10; 178:3;220:21;221:1, 21;222:12;224:4; 226:3;229:10;231:6, 10,11,21;232:8;233:7; 238:22;243:9;249:14; 322:9;333:18
commonly (1) 218:3
Commonwealth (1) 215:15
companies (5) 91:1;94:16;233:9; 324:15;325:2
company (4) 94:18;110:6; 170:10;324:7
compare (4) 106:17;254:10; 281:7;317:14
compared (15)

44:14;60:6;74:8;
82:8;107:17;111:4,6; 195:1;201:14;202:2;
228:15;229:9;236:10; 317:6,9
comparing (4)
74:16;236:8;
257:22;259:3
comparison (3)
79:14;83:18;195:2
comparisons (1) 212:8
COMPASS (1)
285:18
compatible (4)
17:1;46:7;60:11,13
compelling (1) 251:18
compiling (1) 61:21
complain (2)
55:11;300:16
complaint (1) 137:10
complaints (3) 60:11;312:16; 331:13
complement (2) 118:16;229:13
complete (5) 162:8;167:9; 260:11;273:7;301:17
completely (12) 64:4;105:22; 127:19;129:10;142:4; 146:21;150:9;156:5; 193:21;279:8;330:1, 21
complex (5)
74:18;82:5;164:11; 273:11;304:12
complexities (1) 321:2
complexity (2) 229:17;276:21
complicated (13) 38:9;67:7;134:16; 140:15;202:7;251:8; 272:7;273:6;276:20; 286:5;319:17;320:1; 321:1
complicating (1) 304:7
complications (2) 267:21;268:14
component (7) 10:9;118:2;139:14; 174:22;248:8;292:1, 12
components (2) 259:19;308:12
composite (1)
116:12
compounded (1) 212:6
comprehensive (9)
10:4;34:16;42:16; 187:21;228:14;230:9; 272:17;273:5,6
compromise (1) 311:7
compulsive (1) 166:15
computer-aided (1) 21:14
CONCEPPT (7)
4:8,14;10:7;12:9, 15;13:1;36:12
concept (11) 31:7;47:6;127:4; 133:7;156:4;210:8; 244:21;248:2;298:2; 314:14;315:13
concepts (2) 16:1;28:8
conceptual (1) 308:7
conceptually (1) 291:8
concern (1) 51:13
concerned (1) 134:5
concerns (2) 128:15;211:21
conclusion (2) 121:12;149:2
conclusions (1) 22:6
concordance (1) 150:21
condition (9)
169:15,17;172:5,8;
287:19;298:22;300:1;
324:1;328:17
conditions (8)
57:15;58:2;124:20; 133:5;153:4;158:1;
160:14;251:8
conducting (1) 17:21
conduction (44) 22:19;23:5,5;48:14; 78:15;79:10,12;80:9; 86:2;101:1,11;103:19; 104:7,14,15,18; 105:19;195:21;196:9; 197:11;198:10,13; 200:12;201:7;204:15, 15;205:8,19;206:12; 207:2,13;208:22; 209:4,10;211:22; 213:13;220:4,5; 223:22;230:4;278:8; 279:5;303:9;321:14
conductions (2)

22:15;133:12
conference (2)
24:4;50:1
confirm (6)
195:21;196:12; 198:5;200:22;204:10, 18
confirmation (1) 204:8
confirmed (5) 180:10;205:8; 207:5;314:6;333:22
conflate (1) 179:17
conflating (1) 133:2
conflation (1) 51:13
conflict (2) 57:2;267:1
conflicts (1) 25:14
confocal (3) 22:11;197:8;201:3
confounders (1) 165:19
confounds (1) 224:11
confused (3) 108:13;207:15; 276:22
confusing (2) 205:2;262:9
congenital (2) 61:13;75:13
Congratulations (1) 215:16
conjunction (2) 16:20;248:5
connection (1) 103:17
consensus (5) 20:5;48:12;171:9; 226:14;308:10
consequence (4) 11:15;13:6,12; 55:12
consider (15) 17:6,9;26:1;36:14; 47:7;48:1;54:3;89:17; 176:22;185:11; 256:20;271:10; 272:18;292:21;312:20
considerations (1) 47:17
considered (5) 36:18;81:14;83:3; 241:12;277:19
considering (2) 36:19;184:5
consistency (2) 255:22;262:20
consistent (10)

201:14;202:16,19;
209:22;212:19;213:6,
9;266:10;322:18;
326:1
consistently (2)
203:4;218:8
consists (1)
61:17
consortium (3)
10:8;12:15;78:1
constant (2)
68:1,3
constipation (2) 259:21;261:6
constraining (1) 244:19
construct (5)
134:8;257:2;291:5;
314:3;332:4
consultants (1) 94:15
contact (4)
190:5;197:13;
202:21;214:5
contactin (2) 105:4;133:10
Content (3)
13:20;256:1;262:21
context (1) 77:16
continue (4) 179:8;185:15; 306:3;327:19
continuing (1) 307:3
continuous (1) 262:7
continuum (1) 238:21
contract (2) 9:6,10
contracts (2) 9:3,7
contrast (1) 254:11
contribute (4) 33:7;67:14;188:19; 242:8
contributes (1) 66:13
contributing (1) 66:19
contributors (1) 69:18
control (18) 33:11;34:9,16; 35:20;36:3;111:4,7, 13;131:14;167:2; 236:1,11,13;257:10, 17;266:11;302:9,16
controlled (2) 112:22;251:10
controls (24)

| 36:1,5;74:9;107:18; | co-segregation (1) | 217:14 | $323: 18$ | darkness (2) |
| :---: | :---: | :---: | :---: | :---: |
| 194:18;195:1;199:6, | 169:2 | criteria (113) | crucial (6) | 11:12,16 |
| 19;200:21;201:15,19; | cost (7) | 8:9,15;15:2,6;19:1 | 26:15;31:11;55:9 | dart (1) |
| 202:3,17;203:5;207:6; | 31:22;47:13,16 | 16,19;21:11; | 7:18;138:2;163:3 | 95:10 |
| 213:20;214:11;227:6; | 8:1;90:16;91:4 | 22:5,10,13,14,22; | crudescence (1) | data (89) |
| 234:11;236:22; | 245:13 | 23:2;46:13;53:10 | 147:3 | 8:12,13,14;32:6,22; |
| 257:16;258:13,14 | costs (5) | 59:1;72:17;74:13,14 | cryptogenic (8) | 34:10,20;41:19;44:8; |
| 262:15 | 31:17, | 88:7;104:6;105:20; | 95:14;218:13; | 45:18;46:3;47:13; |
| controversial (3) | 19 | 116:4;128:12;129:7 | 9:3;221:13;238:14; | 48:8;76:5;78:14,20; |
| 93:11;111:2;240 | count (1) | 141:12;172:17; | 240:7;252:19;321:13 | 82:12,14;83:20;84:8; |
| controversy (3) | 154:3 | 176:15;185:4;187:21; | CSF (7) | 85:16;87:21;95:13; |
| 15:16,17;93:15 | counted | 190:19;191:1;193:2; | 98:5;101:1;108:11, | 99:22;101:19,19; |
| conversation (1) | 124:4 | 196:15;203:14,15; | 1,17;119:2;120:1 | 102:10;112:18;126:7; |
| 228:8 | countries | 204:16;205:4,9,17 | CSL (1) | 127:5;131:9;134:7; |
| conversely | 30:15;39:14;92: | 206:1;207:22;208:2; | 94:16 | 144:7;145:21;148:4; |
| 159:18 | 222:13 | 210:4,11,16;215:19 | CSPN (9) | 157:21;158:15;162:5, |
| convince (1) | country (3) | 216:22;226:14; | 218:6,15,21;239:13; | 6;169:20;176:6; |
| 212:22 | 21:2;178:22 | 237:13;239:11;240:6; | 240:12;241:22; | 182:11;183:9,16; |
| convinced | counts (1) | 254:10;257:13; | 298:21;299:3, | 190:21;193:3,13; |
| 103:7;293:18;295:3 | 272:5 | 262:11,18;263:18 | culture (1) | 194:8;195:12;197:11; |
| convincing (5) | couple (2 | 275:10;282:16; | 65:19 | 198:9,18;200:13; |
| 35:16;53:22;84 | 5:12;13:1 | 283:19;284:5,14,2 | cumulatively | 201:20;202:6;203:8; |
| 213:12;236:11 | 28:7;40:12;55 | 286:10;287:20; | 48:19 | 206:22;208:20;209:6 |
| convincingly (1) | 94:14;105:15;115 | 288:21;289:2,21; | cure (2) | 17;210:13;212:21 |
| 235:1 | 120:20;132:22; | 291:20;293:13,14,20; | 319:7,9 | 216:12;217:2;221:21, |
| cooperative (4) | 172:21;215:11;228:3; | 294:8,12;295:17; | curious (1) | 22;224:17;225:14; |
| 9:4,5,8,10 | 247:14;271:4;282:18; | 298:8,15,17,22;299:5, | 73:22 | 226:12,13;227:13,17, |
| coordinator (1) | 283:17;291:12; | 10,11,21;304:20; | current (6) | 22;229:4,15;236:7,15; |
| 68:5 | 312:12;318:3 | 305:8,13,19;311:1 | 14:10;59:12,15,22; | 242:5;247:3;253:21; |
| cord (1) | course (39) | 18;312:6,7,13,21; | 238:6;320:18 | 254:4;272:15;278:2; |
| 28:11 | 23:7,13;26 | 313:2;316:1;321:18; | currently (2) | 279:3,6;321:21;332:9; |
| core (2) | 52:17,20,21;53:1 | 324:1,2,4,8,13,13,15, | 9:4;183:8 | 333:9;334:3 |
| 182:13;235:17 | 62:18;67:15;69:15 | 22;327:20,22;330:15; | curse (2) | database (1) |
| Corinthian (1) | 70:1;74:11;76:15 | 331:9,16;332:18; | 25:8;216 | 193:1 |
| 94:19 | 90:19,22;101:16; | 333:10 | curve (3) | databases (1) |
| corneal (3) | 136:17;139:3;155:18; | criterion | 246:1;247:6, | 50:14 |
| 22:11;197:7;201:3 | 163:6;168:15,22; | 86:4;294:21;328:7 | cut (2) | daughters (1) |
| correction (1) | 170:2;173:3;177:20 | 12 | 108:19;2 | 61:3 |
| 37:8 | 184:21;225:9;246:7; | critical (17) | cutoff (5) | Dave (2) |
| correctly | 252:2;265:17;270:18; | 26:4;52:15;53:3 | 21:8;204:4;205:7; | 114:13;148:3 |
| 323:15 | 275:10;288:21; | 166:22;184:19; | 237:1;246:12 | David (16) |
| correlate | 298:11,15;299:3; | 186:12,215:8;250:13; | cutoffs (2) | 22:3;77:10;87: |
| 80:1,4;122:9; | 301:17;305:2 | 256:4,15;258:2,20; | 283:3,21 | 126:14;128:9;146:6; |
| 149:22;278:10,17 | courses (1) | 276:16;280:9;282:5 | cuts (1) | 147:6,10;160:22 |
| 296:20;297:5 | 185:10 | 290:16,19 | 212:1 | 162:7;164:1;285:20; |
| correlated (3) | cover (3) | critically (1) | cytokines (5) | 303:2;304:13;306:18; |
| 275:7,9;297:8 | 233:10;234:1; | 49:22 | 124:7,10;12 | 328:22 |
| correlates (2) | 256:10 | criticism (2) | 128:18;184:5 | day (6) |
| 181:13;278:13 | covered (1) | 7:22;27 | cytotoxic (1) | 24:22;100:22 |
| correlating (2) | 233:14 | criticize (1) | 129:21 | 01:11;249:2;295:22; |
| 275:5,22 | covers (1) | 290:11 |  | 299:1 |
| correlation (9) | 61:10 | criticizing | D | days (10) |
| $\begin{aligned} & 118: 9 ; 149: 15 ; \\ & 182: 3 ; 189: 22 \end{aligned}$ | $\begin{array}{\|r} \mid c r a f t ~(\mathbf{1}) \\ 239: 11 \end{array}$ | $45: 1$ crop (1) |  | $\begin{aligned} & 11: 6 ; 39: 12 ; 65: 19 \\ & 66: 4,8 ; 96: 14 ; 97: 1 \end{aligned}$ |
| 279:5;281:9,10; | cramps (1) | 266:15 | 3:12 | 102:17;117:12;257:3 |
| 296:22 | 100:5 | cross (1) | Dan (2) | day-to-day (1) |
| correlations (4) | create (2) | 220:16 | 35:22;235:18 | 6:5 |
| 274:13,20;278:7; | 29:14;321:2 | cross-line (1) | dance (1) | de (1) |
| 279:1 | created (1) |  | 54:15 | 324:14 |
| corresponded (1) | 41:21 | cross-referen | danger (1) | DEA (1) |
| 326:3 | creates (1) | 229:17 | 140:22 | 6:20 |
| cortical (1) | 211:17 | Crosstalk (4) | dangerous (1) | deactivation (1) |
| 213:22 | creative (1) | 92:1;156:3;300:4; | 185:6 | 62:13 |

deal (4)
186:16;250:19; 300:11;319:12
dealing (4) 249:22;307:16; 315:16;325:9
dealt (1) 244:13
Deb (1) 148:12
debate (1) 57:9
debating (1) 165:3
decades (2) 11:9;163:14
December (2) 16:12;36:12
decide (8) 20:20;28:13;43:21; 50:3;258:4;302:17; 303:18;306:19
decided (7) 16:12;93:15;170:1; 173:19;211:14,15; 249:12
deciding (2) 172:18;316:6
decile (1) 223:16
decision (2) 304:9;315:22
decisions (1) 46:13
decline (2) 144:11;145:22
decrease (1) 54:2
decreasing (1) 22:8
dedicated (1) 187:12
deeply (2) 136:4;290:11
defects (5) 40:16;41:1,13; 99:15;105:7
defend (1) 137:22
defense (1) 302:14
deficiencies (1) 223:8
deficiency (5) 17:12;225:10; 231:8;232:1;248:20
deficient (1) 250:3
define (40) 16:7;20:19;49:9; 55:5;95:1,17;97:3; 98:16;150:11;158:2; 159:4,11;165:3;170:7;

174:8;175:17;176:6,
13;206:3;211:18; 219:7;224:15;245:19;
263:12;276:15; 291:22;301:10; 304:21;305:7;306:11, 20;315:8,18;317:19; 320:20;327:8,9;329:4; 331:4,4
defined (21)
26:9;28:1,12;50:8;
78:22;89:5;133:17;
143:2;163:1;209:2;
263:14;276:5;286:1; 289:21;303:15; 306:20,22;313:11; 322:1;326:18;327:13
defines (2)
303:14;320:12
defining (7)
56:6,11;157:22;
163:3;164:4;246:3;
327:12
definite (7)
112:5;223:15,15,18, 21;224:1;285:7
definitely (1) 126:5
definition (16)
15:5;26:3;49:22;
50:2;53:2;55:9;
173:18;205:14;209:1; 240:6;282:16;285:7;
301:21;304:10;323:7;
332:22
definitions (4)
27:4;32:21;94:11; 265:8
degeneration (8)
66:5,10,12,14; 105:21;142:21,22; 242:11
degenerations (1) 65:20
degree (5)
51:22;96:12;136:3; 291:15;305:14
delete (1) 319:10
delivering (1) 74:19
delta (1) 57:8
delve (1) 233:15
dementia (1) 280:12
democratic (1) 93:6
demonstrate (2) 96:3;235:1
demonstrated (1) 64:10
demonstrates (1)
221:20
demyelinating (5)
101:3;104:1,3;
106:5,8
demyelination (2)
103:21;106:6
demyleinating (1) 133:11
density (34) 21:4,7;42:15;54:2, 19;72:12,16,20;87:14; 125:14;130:20;136:6, 10;139:7;146:3; 149:20;150:2;151:7, 11;176:16;188:12; 189:11,19;190:10; 195:20;198:7;206:12; 238:3;274:9;276:7; 281:9,11;297:7; 306:21
density' (1) 189:6
deny (1) 324:16
department (1) 11:13
depend (2) 250:6;294:22
dependent (8)
107:6;117:18; 120:18;144:14; 195:14;309:4;326:7, 12
depending (15) 95:16;120:22; 135:1;164:12;166:11; 239:15;263:17;
265:11;270:13;286:7; 292:6;293:3;299:14; 305:18,21
depends (15)
31:3,4,5;46:15,19; 47:2;49:22;70:13; 74:11;94:22;141:13; 142:14;154:19; 250:21;276:4
depolarization (1) 59:11
depolarize (1) 66:3
depolarized (1) 60:3
deposition (2) 118:16;302:8
depressed (1) 136:4
depression (1) 316:16
derangement (1) 153:5
dermis (1)
124:5
described (7)
58:13,15;59:5;
64:22;67:13;144:9; 326:12
describes (2)
218:7;277:14
description (3)
58:8;125:7;314:2
descriptions (1) 97:22
descriptor (1) 326:10
descriptors (3)
325:13,14,22
deserve (1) 130:14
design (12)
14:7;54:18;70:9,13;
154:16;157:2;205:11;
217:1,6;286:8;294:19;
298:12
designing (5)
129:15;234:6;
237:17;324:5,7
desirous (1) 18:15
desk (1) 24:11
despite (2) 26:11;268:17
detail (5)
135:10;266:5; 272:15,22;279:12
detailed (2) 78:13;271:8
details (7) 166:8;253:15; 265:12;271:12;273:9; 274:6;275:4
DETEC (1) 283:18
detection (37) 189:7;190:9;197:9, 9;198:20,21,21,22; 199:2,3,7,9,11,13; 200:10,11;201:16,16, 22;202:2;207:3,4,8,9, 14;208:6,17,18,18; 209:13,22;210:8; 213:15,16;219:20; 274:10;322:17
determinant (1) 252:11
determine (3) 224:12;238:14; 315:4
determining (1) 241:15
devastating (3) 13:6,14;172:8
DeVechely (1) 144:8
develop (10)

76:9;117:14;
147:13;149:3;158:5,9; 163:18;248:2,13;
317:17
developed (6)
102:18;148:20;
255:20,20;265:16;
330:5
developing (8)
8:15;14:14,16;
33:13;110:6;139:2;
160:19;253:10
development (15)
7:5;13:4;19:4;
20:12;22:17;33:16;
34:4;38:1;76:5;
138:18;153:11;
154:15;187:5;241:10;
323:21
device (3)
7:15;93:3,4
devoted (2)
85:15;187:4
DFNS (1)
72:17
diabetes (74)
29:7,19;30:4,6,7,11,
14;31:1,3,5,8,16;33:5,
9,14,21,22;34:12,13;
35:6;36:6,21;37:3,6,8,
21;42:3;44:20;47:19;
51:18;54:5;96:7,21;
108:21;119:13;
120:10;124:22;192:2;
212:4;224:8;225:9;
229:3;231:3,8;237:11;
238:17;239:4;242:7;
243:21;246:19,20;
249:21;251:19,20;
257:19;264:1;268:14, 14;269:5,6;278:5;
279:4;291:2,7;303:5;
306:9,15,16;307:6,11;
323:17;332:6,7,11
diabetic (46)
14:14,18;30:18;
31:11;34:17;45:11;
46:21;51:16;68:7,12,
20;69:4,9;74:16;78:9;
79:17,21;80:15;86:20;
96:8,13,16;108:14,17;
145:21;153:3;154:22;
160:10,14;165:12;
193:7;223:2;250:2;
264:2;278:6;285:11;
298:14,16;299:17,18;
300:12,14;303:16;
306:7;307:3,8
diabetics (2)
33:8;45:6
diagnose (1)
44:2
diagnosed (2)

112:1;257:18
diagnoses (2)
224:1;257:20
diagnosing (3) 204:7;206:8;289:7
diagnosis (29) 38:11;42:13;48:7; 70:4;80:3;101:8; 127:5;144:5;159:22; 195:9,15;196:7,21; 224:19,19;249:22;
257:12;258:1,20; 275:7;289:22;295:7,8; 306:14,15;311:20; 320:11;328:13;332:2
diagnostic (36)
8:15;18:20;19:6;
22:10;47:18;128:12;
190:19;210:7,14;
226:15;238:7;240:13; 245:9,14;252:18;
269:13,14;290:4;
293:14;294:7;298:22;
299:5,10;304:19;
305:7,12,19;313:2;
314:15;324:1,4,8,13,
21;332:17;333:10
diagrams (1)
100:13
diarrhea (2)
259:21;261:6
dicey (1)
286:11
dictate (1)
249:14
differ (1)
329:20
difference (25)
26:21;34:13;39:9; 42:3;50:22;68:11; 69:17;73:3,4;83:17; 85:13;89:4;132:1; 155:12;194:17;199:5; 227:7;246:9;247:18; 258:11;269:7;297:13, 16;301:4;330:10 differences (21) 15:21;28:21;61:8; 68:22;69:13;86:16; 87:6;100:9;124:5; 154:4;162:5;163:6; 201:5,18;202:4,17; 207:6,9;257:5;258:12; 293:12
different (130)
7:6,12;9:8;17:2; 18:2,4,8;26:14,19,22; 30:1;35:20;37:12,18; 39:15;44:15;46:12; 52:6;53:10;57:19; 60:2;73:13,17;74:15, 22;82:16;87:2;88:2; 89:3;99:11,13,16;

100:12,13,16;103:20, 21;104:6;105:15,19; 106:12;117:6,6,22; 118:10;121:5,6,7,10; 123:16;125:3,12,15; 127:21;128:8,14;
129:17;146:9;147:4,5; 150:18;157:3;165:11, 11;166:5,11,17;167:6; 169:20;170:1;183:11; 192:15,22;195:10;
196:4;200:6,21;206:7; 210:4;216:14;220:19; 231:13,20;243:3; 244:10;245:12,12; 247:20,22;251:14; 257:21;261:4,10; 262:1,5;263:16; 264:20,22;268:11,15; 273:3;274:21;279:17; 281:6,21;289:5,11; 297:15;298:3,5,6,21; 299:14;305:2,8,21; 312:13;313:19;317:1; 318:14;320:14; 321:12;322:2,9,13; 325:15;327:15;329:7, 17,19
differential (1) 164:12
differentiate (1) 48:16
differentiates (1)
297:17
differentiating (1)
53:10
differently (7)
117:19;121:9;
128:6;223:11;247:7; 292:6;304:15
differs (2)
82:13;208:5
difficult (12)
25:9,10;38:7;40:14; 89:6;101:14;102:8; 173:19;179:6;260:18; 273:7;315:8
difficulty (4) 122:20;259:21; 260:9,10
diffused (3)
97:13;102:2,18
diffusely (1) 105:6
dig (1) 254:1
dilemma (1) 123:1
dimensions (1) 15:19
diminish (1) 154:12
diminution (2)

333:19,21
Dinner (2)
334:6,6
direct (2)
31:16;32:1
directed (2)
181:5;307:21
directing (1) 52:18
direction (9) 148:2;170:12; 189:16;194:19;198:9; 214:7;245:22;327:7, 15
directly (5) 23:17;35:20;228:8; 282:2;331:22
director (3) 4:13;6:2;186:18
dirtier (1)
184:6
disability (12) 256:12,14;260:5; 267:10;268:9,16; 269:10;277:7;305:10, 13,20;316:10
disabled (1) 142:3
disagreement (1) 263:11
disclose (1) 25:14
disclosures (4) 94:14;217:8;253:2, 12
discomfort (2) 261:18;267:18
discontinued (1) 177:19
discordant (3) 18:9;151:20,21
discover (2) 51:3;264:21
discovered (2) 39:21;58:10
discreet (1) 306:16
discrete (4) 17:8;53:9;139:17; 306:14
discuss (10) 27:22;44:6;50:2; 137:20;181:1;259:6; 263:8;269:14;310:3; 314:14
discussed (7)
19:8;68:18;72:22; 125:8;153:14;190:14; 265:13
discussing (8)
15:18,20;19:1;
93:10;166:17;198:20; 238:2;269:1
discussion (35)
18:12;48:2;57:10;
67:17;134:17;136:14;
138:19;149:6;170:12;
171:18;173:1;188:19;
190:22;204:11;
214:20;220:12;
230:14;247:15;254:9; 256:5;258:3,21;
269:12;271:6;286:18; 287:7;294:2;304:16; 307:2,13;310:20; 315:10;328:22;329:3; 334:8
discussions (5)
137:15;171:15;
203:6;256:2;329:3
disease (97)
7:10;10:8;11:17,19; 17:4;38:8;39:9;46:6;
49:3;53:15,16;54:1;
66:20;78:7;80:19;
84:10;109:9;113:7;
124:22;128:5;139:3,
15,17;140:2,3,5,10,12,
19;141:3,5;143:22;
146:8,9;152:14;
154:14;157:8;165:3;
166:3;173:21;177:12;
184:21;224:14;
231:17;241:9;246:3,7;
248:20;249:9,11,16;
257:11,17,19,21;
258:15;263:20,21;
264:7,13;266:11;
268:15;276:12,15;
279:7;283:10;285:5;
290:22;293:4,21;
295:2;298:4,5;301:21;
303:5;308:1;309:1;
313:9,13,14;314:22;
315:2,6;316:5,9,9;
317:4,10,11,18,22;
318:14,22;319:8,13,
20,21
disease-causing (2)
81:11;232:16
disease-contributing (1) 65:5
diseased (1)
295:1
disease-defining (1) 20:16
disease-modifying (6)
138:17;141:14;
241:21;295:9;296:18;
299:7
disease-reversal (1) 299:8
diseases (18)
13:6,14;47:16; 48:22;49:2;98:10; 108:4;110:5;112:13;

137:4;148:9;153:3; 220:22;266:19;279:4, 22;303:6;304:10
disease-specific (1) 19:10
disorder (23)
16:20,21;18:21,22;
40:19;57:7;58:16;
62:14,21;100:1;106:8,
22;127:1,2;166:7,8;
177:20;187:5;220:14;
221:22;240:16;318:9;
330:19
disordered (1) 111:17
disorders (16)
17:4;40:15;94:11;
112:1;116:8;119:6;
145:1,3;164:4,8;
225:11;231:12,14;
266:15;313:10,13
disparate (1)
37:19
dispersion (2) 103:18;104:8
disposal (1)
102:13
disproportionate (1) 314:17
disservice (1)
211:5
dissociated (1) 122:1
distal (24)
63:17;78:5;120:9; 151:13;164:14; 188:10,17,22;195:4; 197:7;198:4;200:8,19; 206:19;213:6;217:20; 225:5;228:1;270:5; 274:9,10;305:1;307:1, 13
distally (2)
106:17;329:14
distinct (6)
26:13;62:17;63:14; 68:15;220:14;313:9
distinction (6) 27:9;125:2;126:3; 132:11;150:10;293:9
distinguish (6) 55:6;108:14; 149:11;150:1;311:16; 312:2
distinguished (1) 329:15
distinguishing (1) 106:1
distributed (2) 81:1,13
distribution (26)
37:12;42:18,20; 195:14;196:7;205:6,

20;206:10;219:18; 221:12;223:9;237:3; 261:22;270:2,16; 271:1,18;292:7; 322:15;326:4,11,11, 17;328:19;329:10; 330:2
distributions (1) 44:11
diverse (2) 38:4;307:16
diversity (3)
28:17,18;63:12
divide (1) 170:2
division (1) 6:3
DN4 (4)
283:17;296:21;
297:7;325:13
DNA (3) 84:15;169:13;244:5
doctors (1) 158:3
documented (2) 147:2;179:2
dollars (2) 187:2,3
domain (12) 62:6,12;150:19,19, 20;255:13,16, 17, 17; 266:1;301:9,12
domains (13) 62:15;81:13; 150:17,18;151:8; 261:4,14;262:1; 283:11,13;289:15; 295:21;301:8
domain-specific (1) 265:10
dominance (1) 63:5
dominant (1) 329:14
done (55)
10:12;18:7;20:22; 24:3,7,10;28:3;29:12; 32:15;33:19;35:22; 36:7;42:10;44:12; 46:9;48:5;49:13;76:8; 85:9,10,14;88:17; 109:1;111:20;137:2; 142:11;146:1,1,3; 162:9,9,21;167:8; 174:19;180:10; 187:20;193:11; 208:17,17,18;225:13; 230:1;234:9;249:4; 255:10;262:19;268:1; 269:17;284:1,16,18; 289:17;297:11; 300:13;323:5
donors (1)

226:8
door (3)
45:1;313:22;331:13
Doppler (2)
197:12;202:13
dorsal (2) 28:2;61:19
Dortmund (1) 214:14
dose (2) 165:11,13
doses (1) 165:10
dosing (1) 165:15
double-blind (2) 172:3;173:5
doubt (1) 20:11
down (13) 30:19;32:22;41:21; 47:18;73:10;90:16; 109:9;176:1;217:16; 260:14;261:4;267:16; 282:21
download (1) 271:15
downtown (1) 216:4
dozens (3)
289:15;303:6,6
DPN (4)
298:18;299:21; 300:1,2
DR (485)
4:4,20;5:3,5,8; 10:20,22;12:13;20:3, 9;25:3,21;32:16;41:9, 10;42:9;43:5,9,10,11, 13,16,17,19,22;44:1,7, 9,17;45:5,8,9,13,22; 46:9,9,14,15,17,19; 47:5,10,11;48:3,4,21; 51:11;52:9,14;53:12, 13,21;54:6,8,10,11,12; 55:8,18,20;56:16; 65:21;66:1;71:1,3,6, 14,15,16,18;72:5,7; 73:2,7;74:5;75:4,10, 11,20;76:1,14,17,18; 77:3,7,8,9,11,12,20; 84:14,18,20,22;85:8, 12;86:6,8,10,15,18; 87:4,5;88:4,5,16;89:2, 4,9,21;90:15,19,21; 91:3,7,10,13,18,20; 92:2,4,8;93:8,19; 97:10;121:18;122:4, 12,14,15,16,18; 123:10,19;125:9,18; 126:4,16;127:19; 128:9,11;129:10; $130: 1,3,4,6,22 ; 131: 4$,

5,14,17;132:5,12,20, 22;133:17,19;134:18, 20;136:15,17;137:14; 138:5,6,14;139:10;
140:18;141:8;142:12, 14;143:3,9,10,18; 144:3,14,16,17,19; 145:13,16;146:5,7; 147:6,7;148:3,11,14; 150:6,9,16,21;151:5, 16;152:16,19,21; 153:7,9;154:7,10; 155:22;156:1,4,11,16, 17,21;157:1,2,5,9,10, 12,19;158:10,14; 159:9,10;161:11,12, 13,14,22;162:11,12, 13;164:1,3,22;165:8, 16;166:21;167:10,17, 22;168:2,16,19,22; 169:6,9,10,11;170:13, 15;171:16;173:2,3,4, 12,14,18;174:2,4,5,7, 10,12;175:15,19; 176:3,5,7,11;177:3,9, 21;178:1,5,7,8,10,11, 18;179:9;180:3,4,19; 181:10,18,20;182:6,8, 17,20;183:20,22; 184:17,19;185:16,19; 186:3;187:18;188:5; 205:10,16,22;207:10, 20;208:8,11,14,15,21; 209:20;210:2,19;
211:8,11,12,20;212:9; 214:18,22;215:9,11, 18,22;216:4;218:18; 245:3,4,6,8,15,18; 246:15;247:5,10,11, 13;249:6;250:11,21; 252:13,15,21;273:17, 19;274:16,18;277:5, 21;278:1;279:2,9,10, 11,19,21;280:8,11,21; 281:3;282:5,13,14,15; 284:6,8,11,20;286:12, 14,19;287:1,1,2,4,9, 10,10,12,13,13,15; 288:6,6,7,15,18;290:2, 3,13,16,18;293:5,7,8; 294:9,18,22;295:7,8,9, 10,15,17;296:2,4,5,17; 297:3,20;298:1,10; 299:16,20;300:5,7,9; 301:19;303:2,3; 304:13,14;306:1,2; 308:4,6;309:17,20; 311:1,15;312:8,10; 313:1,3,5;314:19; 315:9,10;317:2,3; 318:1,2,6,8;319:15; 320:2,4;321:6;322:5, 6;323:1,3,9,10,13,19,

20;324:10,19;325:6,8, 9,17,19,20,21;326:4,8, 9,17,22;327:2,4,18; 329:1,21,22;330:1,4,5, 9;331:1,3,7,8,19,21; 333:6,8;334:5
dramatic (3) 28:21;30:4;39:9
dramatically (2)
11:20;224:4
draw (1)
198:18
drawing (1) 321:19
dreams (1) 13:10
DRG (1)
175:7
DRGs (2) 175:7,7
drive (2) 48:19;171:14
driven (1) 77:14
drivers (1) 48:8
driving (1) 12:18
Drug (34) 5:20;7:15;8:1; 12:21;20:12;22:17; 76:4,9,12;77:3;110:6; 129:18;138:18; 141:13;149:8;155:2; 158:19,21;159:7;
242:12;244:1;287:18; 299:14;307:21,21; 315:16;316:19,21; 317:8,9,14,17,21; 319:1
druggable (1) 84:7
drugs (9)
13:4,13;18:2; 124:14;129:20,21; 139:2;160:7;304:4
dryness (1) 261:6
D's (1) 329:21
DSM (1) 324:12
DSM-V (2) 324:3;328:6
dubious (2) 252:21;254:4
dudes (1) 301:22
due (8) 12:2;147:5;274:4; 318:13,14, 15, 15, 16
duloxetine (2) 160:13;165:10
duplications (1) 319:10
Dupont (1)
24:4 duration (4) 31:4;37:22;89:14; 330:2
during (6) 77:11;99:1;184:21; 253:18;259:12;261:9
Dutch (1) 222:4
Dworkin (57) 4:10;5:4,5,8;10:20; 186:3;214:18;215:11, 18;218:15;245:3; 252:13;279:9;282:14; 286:12,14,19;287:1; 288:6;290:2;293:5,8; 294:18;295:7,9,15; 296:2;297:20;298:10; 299:20;300:7;303:2; 304:13;306:1;308:4; 309:17;312:8;313:3; 315:9;317:2;318:1; 320:2;322:5;323:1,9, 13,20;324:19;325:8; 327:18;329:21;330:1, 5;331:7,19;333:6; 334:5
Dyck's (1) 98:1
dynamic (9) 135:11,14,14,17; 282:10;291:5,10,16; 295:3
dynamically (3) 135:21;291:14; 292:15
dysautonomia (3) 110:13;112:9; 178:15
dysfunction (12) 22:21;23:9;27:11; 86:3;100:3,10;105:2, 3;119:21;147:14; 225:1;259:22
dysmetabolism (1) 135:18
dysregulation (4) 111:10;114:15; 116:11;235:20

| $\mathbf{E}$ |
| :--- |
| earlier (12) |
| $44: 17 ; 94: 9 ; 154: 5 ;$ |
| $176: 14 ; 229: 19 ; 231: 2 ;$ |
| $233: 3 ; 241: 5 ; 255: 15 ;$ |
| $257: 15 ; 275: 16 ; 294: 9$ |
| earliest (2) |
| $32: 10 ; 97: 22$ |
| early (8) |

arlier (12) 154.5 233:3;241:5;255:15; 257:15;275:16;294:9 earliest (2)

32:10;97:22
early (8)

87:11;110:8;168:8; 246:21;270:22;274:3; 276:6;308:17
easier (3)
158:2;165:1;246:10
easiest (1)
27:14
easily (2)
244:14;272:5
easy (9)
120:7;160:16,16;
162:14;259:15;
271:15,16;317:6,19
echo (1)
160:21
editor (1)
126:12
editorialize (2) 165:16;254:12
effect (9)
34:22;98:19; 128:22;135:20;
155:11;244:8;247:21; 315:17;317:9
effective (2)
164:19,21
effects (4) 153:2;158:6;242:9; 279:16
efficacious (1) 7:16
effort (2)
8:5;273:11
efforts (4) 6:8;10:13;26:11; 42:7
EFNS (1)
212:11
eight (3) 9:1;199:1;212:18
either (35) 15:8;18:14;42:2,14; 79:10;80:3;84:1; 97:15;112:15;114:8; 154:3;175:20;178:11; 190:16;191:18,22; 192:5,13,15,20; 193:17;194:3;195:3; 196:20;253:10; 257:17;258:8;259:12; 275:6,16;293:21; 306:16;320:1;321:1; 331:16
elaborate (2)
180:19;249:3
elapsed (1) 21:9
elderly (1) 222:12
electrophysiological (3) 58:12;59:4,20
electrophysiology (8) 59:7;61:6;64:10;

97:18;103:13,14;
155:14;280:18
elegant (1) 18:5
elements (1)
128:14
elephant (1)
302:10
elevated (5)
107:15;108:8;
119:22;227:16;248:21
eligibility (1) 312:21
else (18)
61:10;102:19;
120:10;131:12; 133:21;137:9;145:4;
148:12;160:11;169:2;
174:5;226:4;290:2;
307:11;311:18;
314:13;328:5;331:18
else's (1)
269:3
EMA (1) 324:7
email (1) 334:6
emerged (2)
11:12;12:17
emergence (1) 12:3
EMG (4) 90:18;198:10,12; 213:11
emphasize (3) 7:14;123:11;236:16
empty (1) 200:5
encoded (1) 61:21
encounter (1) 178:3
end (21)
9:6,16;14:12;15:9; 24:8;53:8;62:21;94:8; 100:11;123:2;151:9; 162:2;172:7;173:10; 178:5;186:21;249:1; 254:2;310:17;324:14; 328:11
ended (3)
191:13;192:18; 193:12
endings (2) 185:1;201:20
endpoint (11) 128:21;137:7,9; 180:14;243:22;286:9, 9;293:11;295:5; 296:13,15
Endpoints (9) 12:16;34:19;136:1; 138:21;180:18;

290:11;292:18,22; 299:19
ends (3)
73:11;140:11; 324:10
endures (2) 317:9,22
enemies (1) 215:7
engendered (1) 243:11
England's (2) 239:2;243:16
English (1)
191:11
enormous (4) 28:19;85:13;304:1, 5
enough (14) 16:7;23:10,12; 35:13;67:3;99:10; 159:17;171:17; 289:13;298:18; 310:16;326:1;328:9; 333:9
enrich (1) 121:15
enriched (1) 159:5
enrichment (9) 82:19;83:4,7,7,13, 16,19,21;88:22
enroll (5) 78:8;204:2,19; 289:14;305:9
enrolled (1) 262:14
enrolling (2) 203:16;208:1
enrollment (8) 19:19;121:16; 216:22;235:14; 239:11;240:3,6; 295:17
enter (2) 17:13;315:21
entered (3) 17:17;300:12; 316:21
enters (2) 17:20;22:18
entire (1) 157:16
entirely (4) 241:9;245:12; 281:6;294:22
entirety (1) 311:14
entities (2) 17:2;305:3
entitled (1) 52:21
entity (12)

11:16;17:8;29:15, $\quad$ establishing (1)
17;52:19;55:5;305:3, 13:19
7;313:9;314:15;319:4, estimate (1) 13
entry (4)
24:18;35:14;133:6;
263:18
environment (1) 184:6
envision (1) 13:1
epi (1) 181:4
epidemic (1) 15:22
epidemiologic (7) 28:19;32:6,11,15; 34:10;35:17,18
epidemiological (1) 191:18
epidemiology (19) 15:18;16:2,4,17; 25:1,6;28:6;31:10; 45:4,17;50:10;51:15; 52:5,6;220:19;221:2; 222:2,9;241:4
epidermal (4) 125:14;130:20; 189:18;238:3
epigenetic (2) 153:2;156:1
epigenetics (1) 242:6
episodes (1) 147:1
equate (1) 282:6
equipment (3) 21:14,22;22:1
equivalent (4) 130:9;146:3; 306:10;307:15
era (2)
17:17,19
erectile (1) 259:22
error (1) 86:17
errors (1) 276:21
erythromelalgia (7) 58:9,11;60:11,14; 62:11;63:1;99:18
especially (5) 62:22;65:9;155:9; 174:21;279:22
essentially (5) 179:3;219:1; 249:16;270:2;275:16
establish (1) 262:17
established (1) 5:19

31:16
estimates (2) 30:5;38:9
et (22)
6:15;67:18;73:19;
122:5;164:15;177:13; 187:13,13;189:8;
193:15;194:15;
197:10,11,11;202:11;
208:15;223:8,9;
260:14;275:1;318:17;
322:21
ethnicities (2)
28:22;30:21
etiologies (5)
50:5;87:2;144:15; 322:9;329:18
etiologists (1) 194:3
etiology (13) 42:17;47:2;96:5,19; 139:21;149:14;192:1, 8,16;193:20;198:2;
264:21;322:20
Europe (1) 163:7
European (3) 57:3;88:1;168:3
Eva (7) 170:13,15;177:4; 181:8;182:6;323:2; 328:16
evaluate (1) 185:14
evaluated (3) 263:4;326:14,14
evaluation (13) 32:20;45:3,19; 48:20;226:15;228:14; 230:9;234:12;238:7, 17;239:7;240:4,21
Eva's (3) 231:3;300:5;331:22

## even (65)

 17:3;21:16;30:21; 31:21;48:9;50:17; 51:21;53:15;61:15; 64:17;67:7;80:15; 82:4;83:22;85:15; 88:12,20;90:18;96:4; 99:10;104:12,18; 106:1;108:12;113:6; 120:13;127:11,14; 129:11,20;132:17; 135:11,15;142:19; 143:1;148:7,19;154:2; 156:20;159:20;165:3; 166:2,6;167:18; 172:10,12,20;176:6; 199:22;201:15;202:7;211:3;232:18,21;
248:8;258:16;264:11; 273:5;281:17;283:10; 291:14;300:13;
301:19;306:15;332:7
eventual (1)
156:7
eventually (3)
145:3;159:15,18
everybody (15)
4:4;20:22;21:13;
24:17;59:6;92:5;
101:9;138:9;184:18;
257:4;268:6;269:2;
271:15;273:7;275:11
everybody's (1)
257:1
everyone (6)
116:1;134:9;243:8, 17;266:9;314:13
everyone's (2)
54:18;179:19
everywhere (1)
97:14
evidence (26)
32:11;33:4;53:22;
79:9;103:22;111:17;
114:15;118:20;
124:15;127:12;129:4;
142:20;152:11;153:1;
178:12;181:6;185:15; 222:3;230:21;237:22; 238:10,12,13;240:15; 321:15;332:8
evoke (4) 190:5,6;214:5,6
evoked (4)
197:14,14;202:21, 22
evolution (1) 145:5
evolutionarily (1) 302:12
evolve (1) 147:22
ex (1) 192:6
exact (2) 7:3;331:13
Exactly (9) 45:8;65:3;132:10; 144:20;247:5;280:8; 299:20;306:13;323:14
exaggerability (1) 72:19
exam (12) 273:12;278:4,13; 282:7;285:6;312:16; 321:15;326:22;327:3; 331:6;333:16,21
examination (27) 21:15,17,18,21; 23:8;78:14;209:10;

236:19;239:8;254:9; 269:19;270:3;271:19; 272:8,14;274:3,8; 275:19;276:2;277:3; 278:17;279:6;284:14, 21;290:20;291:13,20
examinations (4) 219:20;269:14; 274:21;283:1
examine (2) 222:8;309:16
examined (3) 8:17;216:13;219:1
examining (3) 33:5;42:13;46:11
example (44)
8:12;17:12;40:14; 46:2,6,20;59:21; 63:11,12,15;64:20; 65:17;69:16;70:15;
100:1;112:19;136:20;
137:3;139:1;142:17;
154:11;157:4;160:9;
163:10;184:7,14;
189:2;205:17;212:10;
227:12;249:7;251:22;
256:7,9;276:13;
279:12;280:6;314:22;
316:8;317:7;330:3,16;
331:11;332:6
examples (2)
103:20;243:7
excellent (5)
42:11;151:1;
262:19,20;300:6
except (3)
40:13;301:17;
324:20
exception (1) 270:21
excess (1)
36:3
exchange (2)
65:16;129:4
excitability (1) 59:13
excited (1) 47:15
exciting (6)
5:11;11:8;12:1; 24:20;25:4;118:15
exclude (18) 20:20;22:20;55:3; 193:10;196:1,21; 204:15;208:7;209:4; 235:12;239:6;243:2, 21;251:19;259:1; 291:22;323:16;334:1
excluded (11) 17:15;23:2;78:10; 192:6,14;193:8,9; 208:9;209:9;283:4; 284:18

exclusion (10) 22:13,14;204:16; 248:17;257:13; 282:16;285:13;294:8; 299:11;327:21
exclusion/inclusion (1) 285:9
exclusionary (1) 284:21
exemplified (2) 50:13;52:17
exemplifies (1) 52:18
exercise (1) 233:11
exercises (1) 319:18
exhibit (1) 64:16
exist (2) 102:12;166:18
existing (4) 116:15;224:19; 253:19;332:22
exists (2) 15:22;253:21
exome (4) 91:5;161:16; 167:11;169:11
expanded (1) 7:8
expanding (1) 203:8
expect (7) 24:20;32:13; 104:16;149:19; 161:20;226:5;231:10
expected (8) 24:17;75:12; 189:13;194:17;207:3; 213:5,15;270:13
expense (1) 172:1
expensive (2) 31:11;185:5
experience (17) 4:5;49:14,14;61:13; 88:1;148:17;159:14; 160:22;161:5;165:10; 167:19;170:21; 174:18;178:14; 183:16;278:18;332:19
experienced (1) 310:14
experiences (2) 74:1;162:15
experiment (1) 66:12
expert (1) 90:8
experts (2)
6:18;19:1
explain (1)
64:2
explicit (3)
240:4;248:14;249:1
explicitly (1)
228:4
exploratory (1)
287:21
explored (1)
41:6
expose (1) 142:1
exposed (1) 101:2
exposure (1) 39:15
express (1) 40:1
expressed (2) 61:19;312:10
expression (2) 64:7;183:10
extension (1) 271:20
extent (6) 146:17;162:7; 208:3;220:13;252:7; 278:16
external (1) 105:21
extra (1) 130:14
extracted (1) 193:13
extracting (2) 193:3;206:2
extreme (5)
40:19;58:15;62:13, 21;249:18
extremely (7) 40:17;60:12;68:22; 168:17;169:4;211:2; 275:16
eye (1) 140:16

| $\mathbf{F}$ |
| :---: |

## Faber (46)

27:17;41:9;42:9;
43:9;44:17;45:5,9,22;
56:3,15,16;66:1;
71:14,16;72:5;73:2;
75:10;76:14,18;77:7;
88:5;89:2;136:17;
144:3,16;150:9;
152:19;154:10;156:1,
11,21;157:2,9,12;
162:11,13;167:17;

168:16,22;169:9;
173:2,4,18;174:4;
279:11,21
Fabry (1)
46:8
Fabry's (1)
46:6
face (4)
63:16;117:20;
210:13;308:9
facing (1)
191:12
fact (23)
12:21;94:1;101:10;
110:22;120:11;127:8;
140:12;150:12;
169:14;176:12;212:6;
242:16;253:7;257:21;
262:9;266:15;280:16;
281:9;282:10,19;
283:22;302:5;316:20
facto (1)
324:14
factor (14)
32:4;36:9;66:15;
107:16;140:2;231:19,
22;237:16;241:11; 242:19,20;245:8; 248:8;314:5
factors (29)
34:17;37:21;65:6; 69:19;93:12;119:11;
123:7;125:22;163:3,8;
171:21;204:17;221:3,
4,4;224:13;235:6;
239:15;241:11;
244:12;248:4,5;251:9;
281:6,14,20;318:14,
15,17
fades] (1)
138:13
failed (2)
25:18;179:3
fair (3)
97:10;109:1;237:3
fairly (23)
53:22;128:16;
142:16;177:16;218:8;
221:6;227:4;233:16; 234:1;245:11;248:14; 249:1;259:15,15;
260:10;263:2;272:2;
273:8,12;282:21;
290:5;291:14;301:15
falls (1)
4:14
false (1)
45:20
familiar (9)
5:13;9:20;29:4; 112:17;234:10;255:3; 259:5;273:8;327:13
families (4)

```
84:8;87:16;168:16;
    169:12
```

family (18)
60:7,7,9;62:8;
63:14;67:3;84:15;
85:1,5;90:9;96:11;
168:22;169:3;232:21;
233:2,7;240:22;
243:22
fan (1)
214:14
fantastic (4)
10:12;24:7;61:14;
253:11
far (12)
11:3,3;24:10;57:9;
75:17,17;149:10,16;
160:8;232:7;267:2;
280:2
fasciitis (2)
311:12;331:12
fascinating (1)
267:11
fashion (1)
195:17
fast (2)
62:16;143:4
fasting (2)
47:21;234:16
fate (1)
50:22
father (1)
60:20
fatigue (5)
112:9;261:16,17;
304:2;309:7
favor (3)
90:12,17;137:5
FDA (12)
5:19;6:3;9:3,7,8,11;
138:2;141:2;160:9;
256:21;292:21;324:8
FDA's (3)
6:10,20;7:4
feasibility (1)
315:14
feasible (1)
316:1
feature (4)
30:9;33:1,15;42:22
features (14)
23:3;27:11,19;32:8,
14;33:6,12;34:3,6;
35:4;120:17;121:8;
133:11;244:20
feedback (1)
74:3
feeds (1)
183:18
feel (6)
41:17;112:20;
215:2;247:7;290:10,
17
feeling (1)
139:9
feet (13)
60:12,16,22;62:8; 90:10;117:20;125:4; 219:22;259:20;261:8; 310:5,9,15
FELDMAN (19) 43:5,10,13,17,22; 44:7;65:21;91:7; 170:15,15;177:9; 178:1,7,10;182:8; 300:9;323:3,10,19
felt (3)
116:18;238:9;
243:14
FEMALE (6)
91:17;96:6;106:21; 205:21;222:13;297:2
few (14) 95:3;109:17; 111:11;114:13;115:3; 177:3;198:17;199:21; 203:18;229:2;243:11; 266:1;270:9;289:1
fewer (2)
187:7;206:22
FGF (1)
115:11
FGFR-3 (2)
118:21;119:22
Fiber (446)
4:8;11:8,17;12:1; 15:3,6;16:2,6,9,16; 17:5,8,9,11,14,18,20; 18:18;20:19;21:4,7, 16;22:5,10,18,20; 23:3,9;25:6;26:1,4,6, 9,17;27:10,11,14,15; 28:4;29:2,8,19;30:8; 32:5;34:22;35:5,21; 36:17;37:2,11;38:1,6; 39:3;40:6;41:5;42:11, 15,17;43:11;44:2,14, 20;45:9,12,17;46:2; 47:1,8;48:11;49:1,16, 21;50:7,20;51:14,19, 22;52:2,7,21;53:11, 17;54:2,3;55:1,5; 56:10,18;57:6,11,12, 17,22;58:18,19;59:1; 60:14;62:4,22;67:15, 20;68:6,13;69:5;70:3; 71:9;72:16,20;80:8; 83:10;86:1,2,4,11,14; 87:11,13,18;93:12; 94:2,22;95:8,11; 97:16,20;99:3,5,8,13, 18;100:3,6,19;101:17; 102:9,21;103:4,11,14; 104:19,22;106:2,16, 18,20;108:8;109:3; 110:3,4,9,12,19;

111:6;112:3,5;113:13, 17,20,22;114:7,16; 115:10,18,21;117:2; 119:20;121:19;122:2, 10;123:13,22;124:3, 17,20;125:6;126:2,8, 10;128:13,20;130:20; 132:8,9,15;133:3,3,4, 6,7;136:9;137:11,16; 139:7,12;141:21;
143:4,13,15;146:2;
147:9,12,14;148:7,8, 20;149:2,12,19;150:2, 18;151:7,11,12;152:9; 153:13,15;154:13,18, 22;157:3,15;159:11; 160:3;161:2,19; 163:15,17;164:13,14; 165:2;166:3;171:21;
172:6;173:17;174:3,9; 175:5,13;176:3,16,17, 19;177:1,6,10,18; 178:2,4,19;179:12; 185:19;187:22; 188:12,18,22;189:6, 11,19;190:10,16,20; 191:1,4,6,20;193:6, 19;194:1,1,12;195:9, 15,20,22;196:12; 197:3;198:1,7;199:9, 17,19;200:16,22;
201:10,18;203:5,12, 17,21;204:7,10,18; 205:18;206:8,12,16, 17;207:12,16;208:1,5, 12;209:5,8,17;210:5; 213:3,20;214:11; 216:19,21;217:7; 218:13;220:11,13; 221:15;228:6,10,20; 229:21;230:3,6,18; 233:6;234:7;235:11; 238:3;241:19,20; 244:16;247:1;248:3; 250:15;251:16;253:7; 254:18,20;255:1,4; 256:11,12;257:12; 258:4,16,17;260:4,22; 263:10,13,19,20,21, 22;264:8,11,16;265:8, 9;267:9,17;268:13,19; 269:21;270:12,12,18, 19;271:3,9,21;272:21; 273:1;274:6,9;276:5; 279:15;281:8,11; 283:4,8,22;286:3; 289:8;290:1;291:3,21; 292:1,3,4;297:6; 298:7;300:14,18,19; 301:2,11,12,16,21,22; 302:17;303:15; 304:21;305:1,4,5; 306:21;307:17,19;

308:22;309:7;310:4, 21;311:19,22;312:14; 313:8;314:15,17; 315:5;318:12;319:5; 320:6,7,8,13;321:3,10, 19;322:2,12;326:3; 327:8,9,16;328:13; 329:16;330:11,18; 331:14;332:2,8,16; 333:13,17,22
fibers (34)
11:9,15;12:4,5,5; 23:7;28:2,2;32:9; 35:8;54:19;57:8,8; 99:8;122:11;135:21; 159:18,19;160:2;
183:2;209:18;297:1;
300:11,17;301:1,5;
302:7,7,11,20;308:17, 19;312:18;318:18
fibro (4)
111:6,12,14;125:13
fibroblast (1)
107:16
fibroblasts (1)
183:12
fibromyalgia (9)
100:1;111:4,9; 123:14;124:17,21; 125:3;126:11;131:20
field (17)
11:7;13:10;18:13;
19:20;20:4;23:6;54:8;
56:6;142:15,16;152:3;
158:13;182:10;
184:15;317:5,5,7
Fifteen (1)
334:1
fifth (1)
153:7
figure (7)
65:20;84:16;194:5; 196:22;217:13; 223:14;302:19
figuring (1) 104:7
filaments (1) 210:21
fill (2)
277:1;307:15
filled (2) 4:6;200:7
filter (1) 163:1
filtered (1) 74:12
filtering (2) 74:11;88:7
final (2) 127:1;310:1
finally (8) 7:10;14:11,22;19:3, 3;166:14;258:19,22
financial (1) 94:18
find (29)
29:10;43:3;45:6;
46:1,8;50:14;63:21;
72:18;73:16,19;94:12;
118:11;128:7;161:21;
162:20;163:4;170:6;
184:12;190:6;207:8;
209:12;211:12;227:1;
267:10;268:1,8;
310:12,13;312:1
finding (6)
32:12;209:7;213:7;
232:22;278:7;314:11
findings (25)
54:16;104:16;
176:18;190:7;193:14, 15;195:5;196:3;
197:21;200:18;202:9, 18;204:22;206:11;
208:13;209:21;211:1, 6;212:18;213:2;
282:7;297:9;322:8,19; 333:16
fine (4)
97:12;142:2;
170:11;249:13
finish (2)
42:6;48:21
finished (2)
173:10;188:8
finishing (1) 151:5
firewall (1)
24:15
firing (4)
59:17,17;60:4,5
first (42)
11:21;14:6;24:21;
27:5;48:12;58:7;
63:15;64:20;68:2;
78:18;79:14;97:5;
99:2;103:8,15;109:13;
111:3;117:11;125:7;
133:1;142:13;154:10; 160:4;165:20;168:2;
216:17;217:10;
230:17;232:13;234:8;
235:7;256:16;257:9;
259:11;260:15;
271:14;280:15;
298:15;303:2;306:9;
308:4;327:10
first- (1)
96:11
fiscal (1)
187:1
fit (6)
22:12;244:21;
262:18;268:19;
269:11;324:17
fitness (1)

278:21
fits (3)
16:1;117:16;269:2
fitting (2)
23:1;283:19
five (6)
10:11;96:10;154:7;
199:7;201:4;328:8
five-year (2)
9:5,6
fixate (1)
212:16
flag (1) 240:16
flare (3)
197:12;202:12;
214:6
flashbacks (1) 133:22
flavor (1) 295:21
flip (1)
234:3
float (1) 229:4
floor (1) 279:16
flu (1) 134:10
fluid (1) 109:16
flushed (1) 261:7
focus (16) 7:20;19:16;26:6; 28:14;53:8;72:2; 192:2;247:15;262:2; 270:16;271:3;286:3,8; 287:18;292:1;322:21
focused (5)
27:18;29:21; 216:19;259:18;261:15
focuses (1) 8:8
focusing (4) 78:5;166:4;199:22; 271:11
follow (18) 50:19;75:5;109:7; 112:10;144:3;148:15; 150:22;159:17; 169:15;183:1,9; 185:12;194:5;245:18; 313:5;314:19;321:4; 322:6
followed (9) 33:9,22;34:2; 129:12;142:16; 146:20;149:1;212:19; 291:6
following (11) 20:17;72:6;126:13, 21;152:4;315:15;

320:9;328:1,8,19,20
follow-up (5)
144:6,7;145:7; 150:3;250:12
foment (1) 171:18
Food (1) 5:19
foot (3) 300:16;311:13; 333:18
force (1) 12:18
forefront (1) 269:8
forget (3)
14:11;47:14;113:10
forgot (1)
179:11
forgotten (1) 148:4
form (3) 92:10;111:9;146:21
formally (1) 287:1
forth (4)
89:14;230:15; 239:17;243:1
forward (11) 56:6;135:4;171:11; 257:6;258:22;259:2; 272:10;304:8,9;308:9; 334:8
found (51)
31:21;34:18;36:3,9; 37:18;41:11,14,14; 44:18;59:3;67:20; 69:10;75:12,14;87:14; 106:19;107:15,20; 108:6,8;109:3,13,17; 110:2;111:5,12,14,15, 16;112:12;116:7; 118:14;124:4;126:1; 161:3;169:7;181:6; 188:2;189:14,22; 191:5;199:8,12,14; 202:16,18;219:10; 234:13;289:10;291:4; 319:11
foundation (2) 57:4;78:2
founded (1) 332:18
four (10) 7:6,11;78:18;81:17; 85:17;99:12;199:8,12; 289:12,21
fraction (4) 25:22;26:8,9;29:18
fragile (1) 145:2
fragmentation (1) 176:19
frame-shift (1) 63:7
framework (7)
12:10;13:2,3,11,19;
19:14,15
Francis (2)
186:18;218:19
frank (1) 323:16
frankly (1) 251:17
free (3) 92:16,16;290:17
FREEMAN (100)
4:4,20;5:3;10:21, 22;12:13;20:3,9;37:7; 52:14;71:1,3;75:4,20; 77:9,12;85:8,12;86:8, 15;87:4;88:4;91:10; 92:2,8;93:8;121:18; 122:4,14,16;123:10; 126:4;128:9;130:1,4; 131:4;132:20;134:18; 136:15;138:5;139:10; 142:12;143:18; 144:14,17;145:13; 146:5;147:6;148:11; 150:6,21;151:16;
153:7;154:7;158:10; 159:9;161:11,13,22; 162:12;164:1;165:16; 167:22;169:10; 170:13;171:16;173:3, 12;174:5,10;175:15; 176:3,7;177:3,21; 178:5,8;180:3,19; 181:18;182:6,17; 183:20;184:17; 185:16,19;207:10; 208:8,14;214:22; 247:11,13;250:11; 282:15;284:8;306:2; 311:1;317:3;318:6; 319:15
frequencies (1) 41:15
frequency (27)
29:3,16;37:19;
38:21;41:22;42:3;
59:17;60:4;65:1;
67:18;73:13,16;74:22;
82:17;88:8;89:14; 144:22;175:9;224:7,8, 10;225:20;226:10; 228:15;236:16;262:5, 6
frequent (5)
67:8;88:15;225:7;
226:9;231:9
frequently (5)
21:11;40:3;53:18; 226:5;300:15
fresh (1)

331:21
Frey (1)
210:21
Friday (1) 52:12
friends (3) 4:6;182:9;215:7
front (3) 15:13;25:17;92:9
fruit (2) 244:4;265:4
fulfilled (1) 237:13
full (8)
131:20;191:17; 193:3,13;196:20; 270:3;323:4;327:5
fun (1) 240:18
function (29) 40:21;55:13;59:10; 61:12;62:2,3,5,14; 67:10;75:9,11,15; 76:20;137:19;140:14, 20;141:19;142:7; 153:6;242:7;274:6; 275:6;278:21;299:6; 300:11,17,18,19; 301:4
functional (7) 12:3;67:1,4;150:20; 188:15;275:17;331:17
functions (5) 158:7;302:4,12,13; 318:19
fundamentally (2) 313:19;321:12
funded (1) 78:2
funds (2) 9:2,11
further (11) 69:12;72:12; 137:21;168:19;169:7; 171:15;187:17;263:8; 269:15;290:4;304:7
future (4) 14:20;78:16; 180:15;288:9

| $\mathbf{G}$ |
| :---: |

G856D (3)
62:8;65:17;66:9
gabapentin (4) 160:13;298:19; 299:7,22
gain (3) 62:5,14;322:14
gain-of-function (16) 40:17;41:3,4;56:12; 63:3;67:13;68:21; 69:2;80:2;81:19,22;

83:22;85:4;88:19; 158:15;159:5
gains (1)
211:13
galactosidase (1) 230:11
gammopathies (1) 119:3
gammopathy (3)
127:9;223:8;226:10
gamut (1)
161:20
ganglia (2) 61:19,20
ganglionic (1) 114:6
ganglionopathy (1) 307:14
Gardasil (1)
134:1
gastroparesis (1) 179:2
gathered (2) 12:9;225:16
gathering (2) 244:5;278:2
gave (2) 71:8;103:5
GBS (2) 130:9;133:9
GBS-like (1) 146:15
Gehrig's (1) 54:1
gels (1) 16:3
gene (4) 41:1;58:10;70:12; 162:17
GeneDX (1) 167:11
general (16) 19:11;21:17;26:10; 65:3;81:16;82:15; 84:9;158:20;178:18; 188:18,20;196:3; 225:7;226:6;269:20; 311:19
generalized (2) 164:18;165:4
generally (5) 145:9;270:20; 271:3;281:11;303:8
generated (1) 133:5
generic (2) 41:5;283:17
genes (10) 67:16;69:20;70:1,5; 72:1,5;74:22;75:3; 83:15;167:16
genetic (42) 40:15,16;42:21;

49:8;51:5,7;69:6,17, 20;70:6;80:22;87:6; 88:2;89:3;90:3,6,12,
16;91:4,14;92:5; 99:14;148:10;153:21; 162:14;163:6;167:1; 168:3;169:22;170:19; 171:5;232:9;233:1; 238:10;240:12; 242:22;269:4,6;
301:18;308:12;
318:15;321:21
genetically (1)
78:22
genetics (5)
40:6;56:18,21;
71:19;233:6
genomic (1)
78:16
genotype (3)
17:20;18:1;161:11
genotypes (1) 18:4
geographic (1) 28:18
German (3)
69:9;148:22;210:22
germane (2)
217:9;228:8
get-go (2)
292:8;327:6
gets (12)
30:10;39:2;41:18; 44:15;54:14;96:20; 129:5;135:6;227:20; 243:17;295:16;315:1
Gewandter (4)
10:10;13:9;14:1; 269:16
GGT (1)
47:21
GI (3)
178:14,15;261:17
giant (1)
56:6
giants (1)
14:17
Gibbons (36) 13:22;37:6;53:13; 73:7,7;134:18,20; 166:21;252:15,20,21; 273:19;274:18; 277:21;279:2,10,19; 280:8,21;282:5;284:6, 11,20;287:12;290:13, 18;293:7;294:9,22; 295:8,10;299:16; 300:5;308:6;327:4; 331:8
girl (1) 102:16
Giuseppe (10)
20:15;68:5;126:14;

144:1,9;163:20;168:1; 169:10;183:20;315:9
Giuseppe's (2)
22:22;82:13
given (11)
11:3;38:11,12;40:2; 66:14;80:19;114:17; 172:1;224:6;251:22; 324:12
gives (4)
45:20;120:6;
213:21;270:6
giving (2)
128:13;216:10
glad (1) 221:7
Glenn (1) 100:4
global (1) 91:21
globally (1) 37:14
glucose (23)
15:22;16:14,16,18;
17:1;31:1;33:11;34:8; 35:20;36:2;135:18; 226:3;234:15;235:20; 243:20;250:14,16,18; 251:2,17;257:18; 274:4;276:14
glycemia (1) 237:11
glycemic (1) 46:21
glycolysis (1) 66:6
goal (8) 47:6;78:21;139:11; 156:7;245:19;272:18; 282:12;302:14
goes (11)
24:2;52:1;116:3;
160:5;231:19;262:6,7;
273:13;278:15;
300:10;318:22
gold (8)
106:2,7;211:9,19; 212:7,10;263:10; 289:20
Good (54) 4:4,6;14:6;35:13; 46:22;67:3,4;76:12, 16,21,22;84:18;90:11; 93:22;95:12;96:20,22; 101:16,19,19;102:22; 104:10,11;105:8,18; 107:8;142:17;152:6; 154:12;155:11;
162:18;163:1,2;173:8; 180:8;186:6,7;187:15; 221:22;222:1;227:12, 13;233:11;237:21; 243:11;245:2;247:3;

275:2;278:7;289:13; 295:11;312:4;316:4; 318:6
Gordon (25)
16:4;48:3;51:10; 53:13;78:1;130:1,4; 132:20;142:13;164:1; 215:14,16,18,21;
245:3,4;252:14;259:1; 266:17;277:22;296:3; 306:12;313:4;320:5; 331:19
Gordon's (4)
194:4;329:11;
330:10;331:19
Gore (1) 133:17
gorilla (1)
29:8
government (1) 6:19
grade (1) 325:5
graded (2) 262:5;314:5
gradually (1) 120:16
grail (1) 22:7
grant (1) 94:15
grants (1) 57:2
graph (1) 41:21
gravis (1) 171:3
great (20) 6:17;10:14;94:21; 95:13;108:12;115:20; 134:8;186:15;215:13; 245:4;271:19,22; 277:6;278:1;287:15; 300:11;313:21; 333:20,21;334:2
greater (5) 32:13;237:1; 244:17;305:17;311:6
greatly (1) 50:5
green (5) 189:9;192:19; 194:16;198:5;228:18
greens (1) 189:12
Grifols (2) 94:16;129:16
ground (1) 216:17
group (86) 21:19;25:5;27:17; 33:20;44:18;50:16; 56:7,7;67:19;68:2;

69:8,14;71:9,21;73:2, 12;80:6,13;94:6;98:1; 100:4;111:7,13;
115:20;116:5;117:1;
123:13;124:10;126:2; 131:14,20;134:21; 135:16;140:19;141:4; 144:17;145:2;148:22; 149:1;154:21;155:18, 20;156:6;166:15; 167:3;175:1;178:14; 183:14;193:13,16,22; 194:2;195:3;200:15; 206:6;213:14;214:12; 219:2;221:9;222:4,16, 21;224:18;225:16; 226:6;230:18;245:20; 246:4;254:19;255:2; 258:3;261:12;268:11, 22;272:6,12;274:2; 281:2;293:12;294:3; 305:3;310:14;316:3;
317:10;320:20;322:22
groups (21)
21:20;41:11,14;
62:18;68:15;69:1; 74:4;81:4;83:14; 94:13;95:15;99:13; 117:6;122:21;155:5; 165:9;170:4;180:11; 192:4;257:11,11
grow (1) 286:5
growing (4)
57:20,20;104:12; 118:20
grown (2) 52:19;218:6 growth (2) 107:16;125:22
guess (14)
7:22;30:7;34:10; 49:1;76:14,20;106:11; 156:6;159:10;277:9; 285:20;298:1,20; 308:18
guesses (1) 128:3
guesstimate (1) 29:17
guideline (2)
195:10;243:15
guidelines (17) 7:19;54:9;191:20; 193:17;195:7;196:4,5,
8,11,19;204:6;206:5,
7,14;212:11,20;238:6
Guillaine-Barre (4) 100:20;101:5,8,20
guys (3)
93:19;99:1;284:16


322:6;325:6,9,19,21;
326:8,17;327:2
Harvard (2)
192:12;252:16
head (2)
121:12;285:15
headache (1)
112:10
HEAL (1)
186:19
Health (2)
36:8;237:10
healthcare (2) 48:6,19
healthy (9)
195:1;200:21;
201:5;202:3,17;203:5; 207:6;213:7,20
hear (4)
40:11;41:15;
293:16;314:13
heard (16)
56:4;57:7;74:3;
99:4;123:17;134:22; 135:5;136:2;151:20;
231:1,4;257:14;259:1; 316:15;327:12;328:16
hearing (1)
293:8
heart (1) 20:7
heat (5)
190:5;197:14; 202:21;213:18;214:5
heating (1) 202:12
heavily (1) 45:18
hell (1) 95:22
help (7) 23:20;42:4;94:5; 104:10;190:22;194:5; 289:13
helped (2) 36:13;37:7
helpful (10) 97:19;104:19,20; 109:4,6;118:21; 153:19;155:16;272:3, 7
Helping (2) 186:21;309:13
helps (1) 137:22
Henry (1) 228:5
Hepatitis (3) 39:6;239:21;243:8
hereditary (9) 40:8;95:16;232:11, 19;238:11;263:22; 308:11,14;309:4
here's (1)
272:11
heresy (1)
170:16
Herrmann (20)
22:3;54:11,12; 77:11;87:5;128:9,11; 130:3;146:6;147:6,7; 164:1,3;210:2;211:11; 285:20;304:14;329:1, 22;330:4
Herrmann's (1) 160:22
Hertz (1) 6:4
heterogeneity (3) 211:2;212:12; 288:19
Hi (2) 73:7;76:3
high (15) 39:1;108:18,20; 185:8;204:20;212:2; 227:1,10;236:12; 237:4,16;248:6;263:3; 296:11;310:16
higher (7) 60:4;65:2;72:10; 82:17;223:6;231:17; 237:14
highest (2) 190:2;271:4
highlight (13) 94:1;95:19;112:18; 113:15;114:12; 115:12;211:6;253:13; 254:16;255:12;257:8; 259:4;327:6
highlighted (2) 79:15;292:3
highlighting (1) 271:13
highlights (4) 95:6;210:3;220:8; 279:2
highly (2) 24:15;164:19
high-quality (1) 211:5
histamine (2) 202:22;214:6
histogram (1) 230:17
histograms (1) 205:1
historic (1) 195:3
historically (1) 320:19
histories (1) 78:13
history (34) 26:19;67:4;78:5;

83:1;90:10;96:7,7,21;
115:5;120:2,8,10,15;
140:4;143:12,21;
145:15,19,20;148:9,
15;186:11;221:22;
232:21;233:2,7;239:8;
240:22;243:22;244:1;
246:3;310:10;317:17;
329:9
history's (1)
96:11
hit (7)
76:15;159:18;
253:15;263:2;266:12;
290:13;294:16
hits (2)
257:4;261:4
HIV (6)
37:16,20,22;46:22;
78:9;159:16
Hoke (30)
77:13,19,20;84:18,
22;86:6,10,18;88:16; 89:9;90:15;91:3;92:4; 130:6;156:17;157:1,5, 10,19;158:14;164:22; 167:10;174:7,12; 175:19;176:5,11; 178:11;205:10;273:17
hold (1)
131:5
hole (1)
230:14
holy (1)
22:7
home (1) 94:17
homeostasis (1) 242:10
homocysteine (1) 248:21
homogeneous (5)
123:1;154:21;
156:5;316:3;320:19
honed (2) 282:21;312:16
honest (1)
313:7
honor (1) 56:17
honored (1)
252:22
hook (1)
295:16
hope (10)
6:22;9:7;15:4,16;
186:8;188:19;216:11;
253:5;300:21;313:11
hopefully (8)
13:12;53:8;254:12,
14;273:18;282:11;
288:1;300:7
hoping (1)

| 14:20 | I228 (1) |
| :---: | :---: |
| Hopkins (5) | 63:12 |
| 77:13;176:20; | I228M (1) |
| 178:14;233:13;287:5 | 65:10 |
| horrible (1) | ibuprofen (1) |
| 117:14 | 158:21 |
| horribly (1) | ICE (1) |
| 142:3 | 185:12 |
| hot (1) | idea (26) |
| 256:3 | 27:22;41:2;45:20; |
| hour (1) | 50:17;80:1;81:2;99:5; |
| 188:1 | 116:11;123:4;126:21; |
| hours (4) | 153:11;159:2;169:15; |
| 40:12;166:17; | 179:18;191:16; |
| 186:6;253:19 | 241:22;242:17;244:5; |
| hour's (1) | 250:21;252:4;270:6; |
| 52:11 | 301:7,10;307:10; |
| housekeeping (2) | 321:20;325:4 |
| 23:15;92:14 | ideal (3) |
| hubbub (1) | 127:20;288:13; |
| 134:2 | 289:1 |
| huge (8) | identical (1) |
| 47:20;91:17; | 41:22 |
| 127:16;157:14; | identifiable (1) |
| 212:17;288:19; | 101:6 |
| 297:15;304:2 | identified (7) |
| hugely (1) | 79:5;80:22;85:3; |
| 321:1 | 112:4;175:6;192:21; |
| Hughes (1) | 243:5 |
| 234:9 | identify (6) |
| human (3) | 78:22;94:7;99:17; |
| 35:14;175:7;191:10 | 121:3;191:4;232:1 |
| hundred (4) | identifying (1) |
| 90:21;91:5;219:2; | 117:4 |
| 303:12 | ideology (1) |
| hundreds (2) | 154:6 |
| 320:14;322:9 | idiopathic (96) |
| hunt (1) | 16:9,22;17:7,14; |
| 226:20 | 26:11;32:12,19;41:12; |
| hurdles (1) | 42:2;47:1;49:13;50:7, |
| 266:2 | 10;51:3,7;59:1;68:12, |
| hurt (1) | 18;69:5;74:16;78:9; |
| 290:10 | 79:17,21;80:8,13; |
| hurting (1) | 83:5,8,10,12,19;84:1, |
| 121:16 | 2;86:10,19;98:13; |
| hyperesthesia (1) | 124:3;145:19;146:4; |
| 271:20 | 147:9;149:12;154:22; |
| hyperexcitability (2) | 157:22;174:2;190:16, |
| 61:16;63:22 | 20;191:1,22;192:5; |
| hyperglycemia (1) | 193:6,19,21;194:6; |
| 37:9 | 197:3,22;199:9,16; |
| hyperreflexia (1) | 207:11;208:1,4,12; |
| 102:2 | 216:18;217:7,11,19, |
| hyperthyroidism (1) | 21,22;218:4,5,12,12; |
| 228:21 | 219:3,7;221:16;223:1; |
| hypertriglyceridemia (1) | 224:15,20;228:6,20; |
| 234:19 | 230:19;232:14;234:7; |
| hypothesis (3) | 235:11;236:9,10; |
| 156:12;169:18; | 240:7;241:15,16; |
| 250:22 | 244:16;245:20; |
| I | $\begin{aligned} & 251: 16 ; 258: 18 \\ & \text { 263:21:264:3:304:11: } \end{aligned}$ |
|  | 313:20;314:16 |

idiot (1)
$217: 1$

IgG (2) 109:5,8
IgM (1) 108:9
ill (1) 146:12
illness (6) 39:7;40:3,4;101:7; 117:13;130:11
illnesses (1) 116:9
illustrate (2) 28:7;39:9
illustrates (1) 31:7
imagine (6) 4:21;166:14; 187:14;263:16;273:1; 327:20
immediately (1) 270:12
immigrants (1) 39:18
immune (30) 75:21;93:12;97:1,4; 98:17;100:19;103:7; 106:1,4;108:15; 110:21;111:10;112:1, 13;114:15;116:11; 119:4,14;120:3,6; 123:21;126:17; 171:21;173:16,18; 179:18;225:10; 231:11,13;244:15
immune-mediated (20) 18:18;95:9,11;96:1; 100:21;102:9;104:4; 107:5;109:7;115:18; 117:2,10;121:14; 122:1;128:12;135:5; 155:1;174:8;179:14; 184:11
immunity (2) 111:18;229:8
immunization (1) 240:18
immunofixation (3) 243:17,18,19
immunohistochemistry (1) 302:3
immunologic (2) 42:20;240:12
immunological (1) 173:21
immunologist (1) 173:22
immunomodulating (1) 18:16
immunomodulatory (4) 94:3;143:12; 179:12;244:15
immunopathology (1) 113:20
immunosuppressive (1) 124:13
immunotherapy (2) 142:17;185:2
impact (6)
55:10;242:14; 305:11,14,15,19
impacted (2) 281:14,20
impacting (1) 266:20
impacts (1) 52:5
impaired (18) 15:21;16:14,18; 17:1;31:1;59:21;62:6, 9,13,16;172:9;199:3, 8;250:14,18;257:18; 274:4;276:14
impairing (1) 66:6
implications (4) 18:2;26:14;224:14; 308:13
importance (1) 51:4
important (78) 7:14;19:9,14,17; 23:19;27:5;28:9; 37:14;43:18,19;44:16; 47:6;48:16;49:4,5,7; 53:8;55:2;56:20; 61:10;63:4;65:17; 66:18;67:6,16;68:8; 70:4,6;72:2;88:6; 92:12;102:4;111:18; 112:8,19;113:6; 118:22;125:10; 127:15;132:11;133:6; 136:21;140:6,18; 148:8;150:10,15; 154:3,15;169:16; 183:1,5;204:12; 214:10;224:5;227:2; 243:14;255:18;256:2, 20;258:10;265:12; 266:8;269:8;272:18; 274:18;275:3;276:17; 277:1,9,17,21;278:11; 280:5;314:2;332:6,15; 333:11
importantly (3) 104:12;105:1;111:8
impressive (2) 103:18;109:18
improve (18) 7:21;110:15; 130:10,19;140:14; 142:6,8;147:20; 149:14;150:1,12,13; 172:11;174:18,20;

179:5;285:2;304:6 improved (13) 7:6;8:15;110:17,18, 22;113:11,19;116:17, 19;128:21;144:13,18; 179:7
improvement (11) 129:9;130:18; 135:19;136:1;138:1,8; 140:20;149:21;315:1, 4,6
improves (1) 242:2
improving (4)
150:14;174:16;
187:6,9
imprudent (1) 249:19
imputing (1) 8:12
inability (1)
61:13
inaccessible (1) 11:10
inactivation (5) 59:11,21;62:7,9,16
inadequacies (1) 8:19
inadequately (1) 11:19
inappropriate (1) 205:5
incidence (1) 80:5
include (34)
7:8;26:18;47:4,16; 54:7;56:20;70:12; 119:8,11;123:17; 129:6,16;168:13; 191:21;195:9;196:6,9;
205:12;257:16;258:6, 13;261:5;281:22; 291:20;292:3;295:4, 21;302:20;313:1; 323:6;324:2;329:5,8; 330:14
included (23)
58:18;79:13;
168:17;188:21;192:5;
193:20;194:2;198:1;
208:10,11;210:6;
215:3;232:14;241:20;
242:15;257:1;260:15;
285:4,13;292:20;
293:19;295:12;330:22
includes (1) 214:2
including (23)
6:14;22:9;23:4; 34:21;40:18;60:22; 61:5;67:1;79:4;137:7; 145:11;160:17;169:7; 191:10;230:10;

242:16;248:12;254:8; 274:22;278:6;288:14; 289:4;311:11
inclusion (37)
19:17,18,19;20:11; 22:13;46:13;185:4; 203:13;204:12,16; 205:4;206:1,4;207:20, 22;210:4,11,16; 215:19;248:17; 256:22;275:10; 282:16;283:19,21; 285:8,11;293:13,20; 294:15,21;298:8; 302:19;305:16,20; 322:11;327:21
inclusion/ (2) 294:7;299:10
inclusion/exclusion (10) 8:9;15:2,5;141:12; 284:4,13;286:10; 288:21;324:2,22
inclusive (1) 312:15
incorporated (1) 210:11
incorporation (1) 210:9
increase (6) 124:14;168:14; 183:3;228:19;236:11; 246:2
increased (9) 32:20;33:3,16; 59:16,17;62:10,12; 127:10;187:2
increases (2) 22:7;224:4
increasing (3) 40:9;235:18,19
increasingly (3) 248:18;260:17; 277:16
incredible (2) 290:21;292:16
incredibly (2) 44:12;276:6
indeed (7) 20:14;57:19;59:2, 18;89:2;208:4,4
indefinite (2) 223:16,19
independent (1) 34:8
independently (1) 192:9
index (2) 168:13,20
Indians (2) 30:20;31:2
indication (2) 164:18;173:9
indigenous (1)

39:20
indirect (2)
31:18;32:1
individual (11)
55:1;217:6;223:21; 224:6,12,13;232:2; 235:4;243:13;269:19; 314:9
individuals (15) 92:17,18,19;147:12;
177:16;219:2,11;
223:7;225:10,16,18; 228:1;230:2;236:17; 314:7
individual's (1) 239:15
induced (1) 277:12
industry (4) 6:17;9:12;13:13; 20:10
infarction (1) 127:7
INFD (2) 154:3;332:10
infection (2) 37:16;102:1
infer (1) 309:2
inflammation (5) 98:3;122:8;181:6; 185:1;250:19
inflammatory (12) 118:13,17;120:1; 136:20;153:4;177:10, 18;178:2;180:9; 182:21;183:18;279:22
influence (8) 35:10;51:8;67:9,10, 12;76:20;77:1;184:3
influenced (3) 34:4;316:13,19
influences (1) 51:5
inform (1) 46:12
information (9) 10:3;46:5;145:18; 172:20;206:2;207:18; 253:22;265:21;266:9
informed (1) 292:6
informing (2)
227:13;308:22
infrequent (1) 225:6
infusion (1) 94:18
Ingemar (2) 42:9;137:2
Ingemar's (1) 229:18
inherent (2)

| 150:5;272:9 | instrument (4) | interpretable (1) | investigation (1) | ;116:19,21; |
| :---: | :---: | :---: | :---: | :---: |
| inheritance (1) | 131:18;253:8; | 189:11 | 19.21 | $17 ; 128: 20 ; 129: 1,$ |
| 63:5 | 295:20,22 | Interpretation (6) | investigations (2) | 138:7;142:1; |
| inherited (7) | instruments (6) | 8:14;123:16;126:7 | 130:14;169:1 | 171:22;173:5;177:7, |
| 17:4;63:8;78:11; | 252:18;283:3; | 9,11;181:17 | investigators (1) | 11,14,18,19;178:2,3, |
| 95:17;96:12;104:13, | 290:5,9,17,19 | interpreter (1) | 243:9 | 17,20,22;179:4,7,15, |
| 17 | insufficient (1) | 190: | visible | 17,18;185:12;217: |
| inhibit | 238:13 | interpreting (2) | 11:10 | IVIG's (1) |
| 65:15 | insulin (2) | 189:5;227:2 | invited (1) | 128:18 |
| inhibiting | 234:17;242:2 | interrupt (1) | 56:17 | ivory (1) |
| 76:10 | insult (1) | 293:5 | involve | 90:3 |
| inhibition | 301:2 | intersecti | 159:16;187 |  |
| 77:5 | insuran | 233:17 | involved | J |
| inhibitor | 91:1,8,13,18;233: | intervene | 26:18,18;15 |  |
| 84:4;158:5;299:9 | 324:15;325:2 | 34:12;35:9;252 | 213:22;228:9;256:16; | James (11) |
| 300:1 | integra | intervention (3) | 276:2;291:22;295:5; | 180:3;182:12; |
| inhibitors | 158:7 | 21:12;166:10 | 323:21 | 274:15;279:9;280:10; |
| 79:2 | integrate | 171:22 | involvement | 87:2;290:2;293:15; |
| inhibits | 234 | interventiona | 27:18;28:4;52: | 300:22;304:16;316 |
| 76:12 | integrated | 191:19 | 76:6;160:2;201:10 | Jen (4) |
| initial (4) | 70:5 | into (44) | 291:18 | 10:10;13:9;14: |
| 41:10;73:10;15 | intende | 10:15;30 | invo | 269:16 |
| 218:21 | 237:22 | 58:5;74:15;99:12 | 8:5;229:21;272:14 | Jen's (1) |
| initially | intensely | 116:5;117:6;121:1 | irrelevant (2) | 10:13 |
| 139:20;15 | 26:7 | 122:21;142:17;166:7; | 192:17;271:12 | Jim (1) |
| initiation (1) | intensity | 170:2;173:20;211:4; | irrespective (1) | 84:21 |
| 291:6 | 175:20;262: | 214:9;230:5;233:15 | :1 | job (9) |
| Initiative | intent (3) | 237:17;242:18;245:8; | iSFN (2) | 10:12;24:7,10 |
| 186:19 | 7:4;242: | 249:20;254:1,5,6; | 194:11;298: | 42:11;186:6,7;214:15; |
| injury (8) | intentionally (3) | 263:5;266:5,22;275:4; | isolated (5) | 269:1,17 |
| 27:8,21; | 250:9;253:4;282: | 279:7,11;283:19; | 220:11;264:1 | John (2) |
| 37:11;153:5;314:17 | interactive | 284:11;285:16;286:5; | 271:9;322:1 | 239:2;243:1 |
| 332:9 | 24:15,20 | 289:12;296:14; | ISP (2) | Johns (3) |
| innate (1) | interest (7) | 298:19;301:6;309:3; | 324:3;3 | 77:13;233:13;287:5 |
| 110:7 | 25:14;40:10 | 312:19;316:15;321:8; | issue (21) | joined (2) |
| innervate | 86:21;94:19;138:3 | 324:17 | 8:13;28:17 | 78:1;186:1 |
| 302:8 | 283:15 | intraepidermal (15) | 54:12,13,15;88:5,10 | joint (2) |
| Innovation | interested | 21:4,6;122:10; | 130:7;160:8;161:8; | 270:1;271:22 |
| 5:17 | 9:2;10:2;11:14 | 139:7;151:7,11 | 167:1;170:18;211:16, | Josh (1) |
| inpatient | 157:13;167:14; | 176:15;188:11; | 20;233:5;241:7; | 76:3 |
| 195:4 | 172:19;187:16; | 195:20;198:6;206:11; | 249:6;304:1,2,7 | Journal (1) |
| inpatients | 255:10;270:14;277:6; | 281:8,11;297:6; | issues (17) | 9:21 |
| 199:9 | 278:14 | 306:21 | 15:15;91:8,14,18; | journals (2) |
| inquiry | interesting (18) | intriguing | 126:4;160:19;165:17; | 9:19,19 |
| 28:19 | 5:11;44:8;52:19 | 232:15 | 176:13;216:20; | judge (1) |
| insensate (2) | 71:19;72:14,22;84:6 | intrinsic (1) | 256:15;265:17 | 172:20 |
| 300:16;301:18 | 124:11;157:16,17; | 211:17 | 266:18;304:6;309:10; | judgment (2) |
| insensitivity (2) | 182:10;199:15;204:5; | intrinsicall | 318:3,12;329:13 | 233:11;243:4 |
| 40:22;75:13 | 209:7;223:3;232:18; | 302:5 | Italy (3) | judgments (1) |
| inside (1) | 254:13;264:14 | introduce | 18:6,10 | 221:3 |
| 50:3 | interestingly (3) | 10;56:3;77:12 | itch (1) | juice (1) |
| insistent | 72:15;204:1;209:12 | 92:14;93:10;187:18; | 302:15 | 218:20 |
| 22:9 | interlukin-2 (1) | 215:13 | itching (1) | July (1) |
| instance (18) | 184:8 | introduced | 328:4 | 191:3 |
| 47:19;71:20 | Internal (3) | 4:16 | item (1) | jump (3) |
| 126:19;127:9;132: | 255:22;262 | introd | 253 | 254:14;269:13; |
| 168:13;185:2;219:19; | 266:22 | , | iterative | 300:5 |
| 220:4;221:17;223:17; | international (1) | introduction (2) | 273:20 | justification (1) |
| 224:20,22;225:22; | 39:19 | 188:6;216:6 | IVIG (43) | 134:7 |
| 228:21;229:13;302:7; | internet (4) | invariant (1) | 94:16;98:18; | justify (1) |
| 316:16 | 24:5;92:16,17,21 | 299:11 | 101:12;102:3;110:14, | 259:2 |
| instructions (1) | interpret (1) | inventory (1) | 15;112:15,21;113:13, |  |
| 271:17 | 210:13 | 260:21 | 17;114:2,2,8,9,17; |  |


|  | $6 ;$ | largely (2) | lead (2) | $145: 10 ; 152: 14 ; 161: 6$ |
| :---: | :---: | :---: | :---: | :---: |
| K | 323:4;325:22;327:7 | $110: 21 ; 148$ | 226:13;242: | ;165:12;168: |
|  | kinds (6) | larger (5) | leading (4) | 171:19;193:9;220:9; |
| Karin | $8: 7,21 ; 9: 9 ; 98: 6$ | $\begin{aligned} & 36: 7 ; 41: 14 ; 68: 10 ; \\ & 87 \cdot 2 \cdot 202 \cdot 0 \end{aligned}$ | $\begin{aligned} & 197: 19 ; 231: 21 ; \\ & 256 \cdot 8 \cdot 327 \cdot 5 \end{aligned}$ | 226:9;227:17;231:9; |
| 27:17;41:7;56:3,13, | $212: 7 ; 263: 2$ <br> knee (1) | $\begin{aligned} & \text { 87:22;203:9 } \\ & \text { largest (2) } \end{aligned}$ | $\begin{aligned} & \text { 256:8;327:5 } \\ & \text { leads (4) } \end{aligned}$ | $\begin{aligned} & 233: 2 ; 270: 20 ; 275: 12 ; \\ & 284: 1 \end{aligned}$ |
| 15;71:3,6;76:3;77:16; | $\begin{array}{\|c} \hline \text { knee (1) } \\ 220: 1 \\ \hline \end{array}$ | $\begin{gathered} \text { largest (2) } \\ 34: 15 ; 193: \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { leads (4) } \\ 57: 13 ; 61: 14 ; 69: 1 \end{array}$ | $\begin{gathered} 284: 1 \\ \text { etter (2) } \end{gathered}$ |
| 85:10;88:4;136:15; | knowing (2) | laser (6) | 17:16 | 126:12;218:20 |
| 139:20;144:2;151:19; | 40:2;329:8 | 190:5;197:12,14 | learn (1) | letting (1) |
| 152:5;174:11;229:18; | knowledge (2) | 202:13,22;214: | 51 | 295:15 |
| 233:3;279:9,10 | 22 | last | learned | Levaquin (1) |
| Karin's (5) | known (4) | 10:11;14:3,12;2 | 17:2 | 96:14 |
| 79:14;82:13;85:2; | $\begin{aligned} & 78: 10 ; 128: 5 ; 208: 2 \\ & 231: 19 \end{aligned}$ | $\begin{aligned} & 24: 13 ; 34: 10 ; 71: 20 ; \\ & 84 \cdot 12 \cdot 87 \cdot 8 \cdot 98 \cdot 15 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { least (28) } \\ 14: 20 ; 35: 2,16 ; 40: 7 ; \end{array}$ | $\begin{gathered} \text { LEVEIN (1) } \\ 320: 4 \end{gathered}$ |
| 86:13;166:22 keen (1) | $\begin{array}{\|c} 231: 19 \\ \text { knows (1) } \end{array}$ | 84:12;87:8;98:15; 108:5;115:4,8;119:7; | $\begin{aligned} & \text { 14:20;35:2,16;40:7; } \\ & \text { 95:7;109:8;125:19; } \end{aligned}$ | $\begin{array}{r} 320: 4 \\ \text { level }(9) \end{array}$ |
| $\begin{array}{r} \text { keen (1) } \\ \text { 204: } \end{array}$ | 59:6 | 125:9;132:20;161:3; | 137:12;147:21;148:1; | 24:4;132:17; |
| keep (7) | Kolb (3) | 182:18;191:3;213:2; | 151:20;159:8;174:18; | 140:13;142:15;154:1; |
| 23:15;29:20;56:2; | 38:20;277:5,5 | 247:12;259:12; | 179:19;186:7;210:13; | 184:4;204:20;227:1; |
| $222: 21 ; 230: 22$ | L | $31: 20 ; 332: 21 ; 333: 6,$ | $\begin{aligned} & \text { 213:9,14;242:6; } \\ & \text { 253:18;254:8;279:14; } \end{aligned}$ | $\begin{gathered} 238: 9 \\ \text { levels (11) } \end{gathered}$ |
| keeping (3) |  | 15 | 283:20;291:9,19 | 36:2;107:15;108:9; |
| 53:19;231:12;316:4 | lab (9) | late (2) | 294:13;305:6;316:10 | 119:22;130:18 |
| kerotinocytes (1) | $\begin{aligned} & \text { 58:13;63:22;65:8; } \\ & \text { 94:19;108:19;118:14, } \end{aligned}$ | 180:21;246:? <br> latencies (1) | ```leave (4) 10:7;46:5;185:17``` | $\begin{aligned} & 153: 14 ; 184: 7 ; 227: 8, \\ & 10 ; 229: 13 ; 248: 21 \end{aligned}$ |
| 183:13 | $\begin{aligned} & 94: 19 ; 108: 19 ; 118: 14, \\ & 19 ; 181: 2 ; 192: 11 \end{aligned}$ | $\begin{array}{\|c} \text { latencies (1) } \\ 104: 8 \end{array}$ | $\begin{aligned} & 10: 7 ; 46: 5 ; 185: 17 ; \\ & 294 \cdot 2 \end{aligned}$ | 10;229:13;248:21 <br> Levine (23) |
| $12: 14 ; 70: 7 ; 206: 6$ | labeled (2) <br> 80:8;108:22 | latency (1) <br> 103:16 | $\begin{array}{\|r} \mid l e a v i n g ~(4) \\ 6: 19,22 ; 2 \end{array}$ | $\begin{aligned} & 93: 10,18,19 ; 97: 10 \\ & 122: 12,15,18 ; 125: 9 \end{aligned}$ |
| keywords (2) | laboratories (1) | later (21) | 4:18 | 7:19;129:10 |
| 191:3,5 | 21:2 | 56:13;58:11;61:9 | lecture (2) | 130:22;131:14;132:5; |
| kid (1) | laboratory (8) | 65:6;73:1;78:1;97:13; | 252:22;296:10 | 141:8;143:3,10;165:8; |
| 22:11 | 16:5;21:5;196:1,21 | 111:11;117:12,14 | led (1) | 173:14;174:2;179:9; |
| kids (3) | 224:6,17;228:14; | 125:8;130:17,19 | 10:10 | 245:18;247:5;303:3 |
| 126:19;245:10,11 | 239:14 | 141:11;175:22; | left (10) | liberally (1) |
| kills (1) | labs (2) | 215:12;226:14 | 24:6;32:17 | 254:11 |
| 296:12 | 78:15;167:7 | 258:14;280:22 | 123:11;139:8;172:22; | liberties (1) |
| kind (94) | lack (3) | 285:21;314:1 | 197:4;323:1;327:18; | 253:6 |
| 7:21;13 | 178:1;211:9;309:1 | latest (1) | 328:10 | lies (1) |
| 25:7,12;33:19;38:3; | Lacoma (1) | 281:3 | $\mathbf{l e g}(1)$ | 20:7 |
| 39:13;51:16;53:19; | 209:3 | Laughter (32) | 274:10 | life (4) |
| 58:3;70:14;74:20; | Lacosamide (2) | 4:19;5:2,7;12:12; | legs (6) | $\begin{aligned} & 172: 9,11 ; 278: 4 ; \\ & 315 \cdot 13 \end{aligned}$ |
| 85:19;95:6,19,21; | 155:7,7 | 20:2,8;25:20;55:17; | 19:22;60:16;176: | 315:13 |
| 98:19;99:22;103:1 | laid (1) | 85:7;90:20;91:12,19; | 261:9,9;271:19 | lifestyle (1) |
| 108:13;114:17; | 321:3 | 93:7;97:9;122:3 | Leinders (2) | 250:5 |
| 118:18;124:14; | language | 133:16,18;152:18 | 192:10;214:13 | lightly (1) |
| 125:11;134:2,21; | 191:11 | 154:9;176:10;181:9; | length (4) | 40:7 |
| 141:9,13;180:5; | LANS (2) | 185:18;200:2;216:3; | 20:18;195:13 | lights (1) |
| 186:11;187:5;190:22; | 283:18;296:2 | 218:17;245:7,17; | 326:6,12 | 321:20 |
| 192:5,7,17;193:21; | large (49) | 290:15;295:14;308:3; | length-dependent (12) | liked (3) |
| 194:5,9,12,22;195:3 | 12:2;22:20;23:3,7, | 318:7;323:12 | 27:7;28:15;103:6; | 109:4;216:6;241:5 |
| 196:20;200:13,21; | 9;26:8;28:4,19;48:8 | launched (2) | 106:15;118:5,7;120:9; | likelihood (3) |
| 203:15;204:3,20; | 50:14;51:22;63:11 | 9:18;207:1 | 124:2,10;195:16; | 232:22;244:18 |
| 205:22;206:2,13; | 64:14;71:9;74:10; | launching (1) | 225:5;239:20 | $311: 4$ likely (14) |
| 210:1;212:16;213:14; | 80:16;86:2,13;87: | 5:22 | lengthy (1) | likely (14) |
| 220:15;226:12,13; | 109:12;111:8;115:21; | Lauria (12) | 63:18 | 31:8;74:19;104:1 |
| 233:19;240:17, | 130:7;133:4,5;147:13; | $20: 15 ; 68: 5 ; 74: 5 ;$ $75 \cdot 11 \cdot 89 \cdot 4 \cdot 126 \cdot 16$. | $\xrightarrow[\text { Leprosy (5) }]{ }$ | $106: 21,21 ; 110: 20 ;$ $119 \cdot 14 \cdot 121 \cdot 12 \cdot 136 \cdot 7$. |
| 244:13;251:5;254:6, | 148:20;149:2;164:20; | $75: 11 ; 89: 4 ; 126: 16 ;$ $144 \cdot 19 \cdot 169 \cdot 11$ | 39:8,11,20;40 | 119:14;121:12;136:7; |
| 15;257:2;259:9,16,20; | 177:16;183:14; | 144:19;169:11; | $223: 12$ | 205:21;225:6;234:14, $15 \cdot 272 \cdot 8$ |
| 261:5;265:1;267:12, | 201:10;209:8,17 | 183:22;211:8,12; | less (33) | 15;272:8 |
| 15;268:5;269:1,12,14; | 216:17;230:3,6; | 315:10 | 4:16;11:4; | limb (2) |
| 271:13,18;273:9; | 262:13,14;270:11; | layering (1) | 36:22;39:17;46: | 270:3,4 |
| 274:3;275:4;276:3; | 271:21;272:6;289:18; | 134:6 | 62:20;68:9;81:15; | limbs (2) |
| 277:17;290:5;293:19; | 292:13;300:14,18; | LDI (1) | 88:9,11,12,18;103:8; | 333:3,4 |
| 298:1;301:9;308:7,7; | 301:15;310:14;321:8 | 202:12 | 109:9;112:21;119:14; | limit (3) |


| 159:13,21;312:19 | load (1) | 17;124:1;125:19,20; | 138:17;145:18; | 165:14 |
| :---: | :---: | :---: | :---: | :---: |
| limitation (2) | 104:15 | 131:10,11,11,12; | 148:12;161:6,18; | lumping (3) |
| 211:17;262:17 | loaded (1) | 135:9,10,17;136:4; | 162:16;163:13,14; | 164:6;211:4;321:7 |
| limitations (5) | 284:6 | 145:17;188:9;189:3,4, | 170:3;175:11,19; | Lunch (4) |
| 114:4;162:4,4; | located (3) | 21;194:13;197:5; | 176:9,16;194:8; | 24:3;184:18; |
| 210:15;274:1 | 24:5;62:5,15 | 198:4,8,11;199:1,8,12, | 197:16;216:20; | 185:20,21 |
| limited (2) | location (1) | 16,21;201:1,3;202:15; | 220:22;222:3;226:16; | Lyrica (1) |
| 191:9;243:6 | 175:21 | 203:11,13,15;222:17; | 229:4;231:2;239:7; | 165:10 |
| limiting (1) | lock (2) | 257:9;280:14;288:10; | 250:11,14;251:7; |  |
| 245:21 | 260:13;267:15 | 290:4 | 253:15;263:4;264:1,1, | M |
| Lin (1) | locus (1) | looking (82) | 5;271:11;272:15,15, |  |
| 6:6 | 58:8 | 29:13;32:11,17; | 21;275:2;277:8,17; | Maastricht (1) |
| Lindsay (1) | $\boldsymbol{\operatorname { l o g }}(2)$ | 33:4;34:11;42:12; | 280:1;291:1;303:4; | 56:4 |
| 280:15 | 92:20,22 | 48:6;50:13;58:5;68:5; | 312:13;313:8;318:8 | macrophages (1) |
| line (1) | logging (1) | 71:19;78:20;83:6,9; | lots (4) | 124:5 |
| 33:4 | 93:2 | 85:16;86:18;88:12,17; | 215:12;217:18; | magnitude (1) |
| lines (4) | logical (3) | 94:5;106:6;108:11; | 279:16;307:14 | 49:16 |
| 32:6,10;49:8;163:1 | 58:7;72:18;246:13 | 109:12;114:4;123:8; | Lou (1) | main (10) |
| linked (1) | long (8) | 124:19;125:21;134:7; | 54:1 | 70:8;78:21;87:2; |
| 184:20 | 84:21;103:16; | 135:1,3;136:1;139:20; | Louis (1) | 137:10,10;205:9,17; |
| list (13) | 144:20;159:17;170:9; | 142:9;151:6;153:15, | 187:20 | 206:14,18;221:11 |
| 29:1,10,14;38:4; | 186:21;238:22;317:19 | 16;178:20;181:21,22; | Louise (21) | mainly (2) |
| 42:16;57:19;123:12; | longer (4) | 182:4;183:3,10,12; | 111:3,15;112:2; | 62:15;205:17 |
| 239:1;253:3;267:16; | 17:9;31:7 | 200:14;201:15;202:6; | 122:18;128:10;130:3, | major (7) |
| 268:3;328:10,14 | 207:19 | 206:9,15;210:10; | 4;131:4;138:5; | 6:13;9:19;132:1; |
| listed (5) | long-term (1) | 223:10;227:12;245:1; | 142:12;146:6;182:19; | 143:1;242:20;247:16; |
| 49:3;95:14;123:7; | 145:6 | 255:13;258:1;259:8; | 183:21;184:17;218:2; | 258:21 |
| 127:10,20 | look (92) | 260:6;261:15;265:3,3, | 244:14;245:19; | majority (11) |
| listening (4) | 28:8;33:13;35:7,19 | 4;268:16,21;269:22; | 255:14;301:7;303:17; | 80:12;107:20; |
| 85:1;134:22; | 42:7,16;50:6;51:2,17; | 272:16;274:3,5,20; | 333:7 | 130:15;143:5,8;149:3, |
| 245:20;280:13 | 53:18;54:4;64:20; | 276:5;278:2,20;281:6, | Louise's (3) | 5;163:16,19;200:20; |
| literature (17) | 68:15;73:15;81:2,21; | 13,19;289:11;291:20; | 115:20;228:9;313:6 | 312:22 |
| 7:19;8:9,18;27:12; | 85:5;88:7,20;90:22; | 310:1,19;314:9;322:3, | love (5) | majority's (1) |
| 29:13;45:16;53:22; | 92:13;98:5;99:11,15; | 7;325:11;326:19; | 20:13;162:12; | 148:18 |
| 148:1;190:15;191:2; | 105:13;106:15;107:4, | 333:14 | 208:19;226:19;314:13 | makes (8) |
| 218:4;221:7;222:6,9; | 11;109:1,10,22; | looks (9) | lover (1) | 26:21;70:16; |
| 239:1;254:2;333:11 | 114:22;116:13; | 38:21;55:15;129:8; | 12:10 | 101:14;109:21;117:8, |
| little (60) | 118:12,15,16,18; | 190:4;238:22;251:3; | low (15) | 9;152:12;272:9 |
| 9:12,13;15:8,11; | 122:7,8;125:14;131:7, | 269:19;282:2;322:15 | 65:1;68:22;109:21; | making (7) |
| 25:9;34:20;56:22; | 13;136:15,19;147:8; | Lopate (1) | 128:2;134:12;136:7, | 125:1;132:18; |
| 74:17;79:16;97:19; | 159:17;185:4;188:11; | 110:1 | 10;168:17;169:4; | 140:7;260:13;267:14; |
| 99:4;100:18;103:8; | 190:16;191:16; | Lopate's (1) | 170:9;175:10;212:1; | 282:5;315:12 |
| 107:3;111:18;117:8; | 192:16,20;195:7; | 100:4 | 226:11;240:13;246:13 | MALE (5) |
| 118:11;121:9;123:16; | 200:4;204:8;212:3,12; | losing (1) | lower (7) | 54:5;85:11;247:12; |
| 127:18;141:10,21; | 214:9;216:12,13; | 54:19 | 32:22;41:22;51:21; | 284:19;288:17 |
| 144:11;149:7;165:17; | 220:2,7;221:8;222:8; | loss (13) | 168:7;217:20;270:4; | MALIK (1) |
| 171:20;179:3;180:20; | 225:8;227:14;237:2; | 31:19;40:21;75:8, | 331:1 | 140:18 |
| 182:18;191:9;213:16; | 239:3;244:6,8;245:11; | 11,14;176:4;219:11; | lowered (1) | manage (1) |
| 214:9;217:11;218:1; | 248:15,16;251:17,21; | 242:1;308:16;313:21; | 60:1 | 93:5 |
| 220:18;232:7;233:21; | 260:7,22;267:11; | 331:17;332:9;333:17 | lower-limb (1) | manageable (1) |
| 245:2;247:16,18,20; | 268:9;271:21;276:3; | loss-of- (1) | 108:1 | 29:20 |
| 249:3;254:15;255:9; | 280:5;281:20;283:7; | 62:1 | lower-quote (1) | managing (1) |
| 256:8;259:7;262:2,4, | 293:11;296:12; | loss-of-function (3) | 211:6 | 143:10 |
| 9;267:18;269:15; | 300:22;309:21;326:5; | 63:6;80:2;158:16 | lowest (1) | mandated (1) |
| 272:9;276:22;284:11; | 327:2;333:10;334:8 | lost (1) | 30:5 | 243:15 |
| 290:3;296:22;297:2,3; | looked (61) | 184:22 | low-frequency (1) | manifestation (1) |
| 320:17;330:12 | 31:14;33:8,11;36:1, | $\boldsymbol{l o t}(63)$ | 82:9 | 319:14 |
| Liu (2) | 8;75:8;80:7;81:11; | 40:11;57:9,15;60:8; | low-hanging (1) | manifestations (1) |
| 122:5,17 | 82:19;83:14;85:20; | 61:11;63:9,10;69:15; | 244:4 | 307:17 |
| lively (1) | 88:16;95:3;105:16; | 76:5;89:22;90:3; | LPs (1) | manuscript (2) |
| 334:8 | 107:19;109:5,16; | 93:20;96:16;97:17; | 109:2 | 13:22;14:5 |
| liver (1) | 110:11;112:3;113:16; | 98:21;105:11;106:8; | lump (3) | manuscripts (1) |
| 20:6 | 114:14;115:4;116:16, | 107:1;111:20;112:9; | 100:7;103:21; | 14:21 |


| many (73) | 93:1 | 309:20;311:15;312:5; | measuring (5) | mention (3) |
| :---: | :---: | :---: | :---: | :---: |
| 4:6;6:2;8:3;19:22; | Mathias (2) | 313:12,22;314:10; | 11:14;252:5;270:7, | 131:8;148:4;255:9 |
| 21:1;35:21;58:2; | 192:10;214:13 | 319:19;322:22; | 8,8 | mentioned (14) |
| 70:10;75:3;77:13 | matter (8) | 328:17;331:1 | mechanical (2) | 13:17;21:1;36:15; |
| 85:17;86:15;91:8; | 24:18;74:10 | mean (31) | 209:13,21 | 77:21;80:12;81:20; |
| 92:20;94:1;113:11; | 146:17;209:1;278:12; | 16:15;26:2;27:7 | mechanism (8) | 82:4;88:6;146:11; |
| 135:10;143:7;146:12; | 326:6,10,12 | 57:18;84:17;88:10 | 165:5;166:6,13 | 148:5;163:5;183:9; |
| 147:18;148:5;153:14; | matters (1) | 90:11;97:10;98:12 | 182:16;184:13;240:8; | 186:10;246:16 |
| 158:7;165:19;179:14; | 278:12 | 122:12;137:7,16; | 242:4,11 | mentioning (1) |
| 183:11;187:15; | maturity (1) | 139:5;141:20;143:8 | mechanisms (4) | 182:1 |
| 210:10;211:4;216:16; | 142:15 | 157:19;176:5;205:12; | 35:17;164:11; | Merkies (1) |
| 223:11;225:3,12; | $\boldsymbol{m a x}(1)$ | 208:19;224:22;246:4; | 244:18;264:18 | 137:2 |
| 234:20,21;237:12; | 270:11 | 251:13;267:5;300:17; | mechanistic (1) | Merkies' (1) |
| 248:5;252:4,9;255: | may | 302:1;303:3;315:19; | 190:17 | 42:9 |
| 7;261:21;262:22; | 5:13;12:9;19:5,6,7 | 316:18;323:7,10; | mechanistically | mess (1) |
| 267:21;268:12; | 38:19;51:20;55:3; | 325:1 | 171:8;297:17 | 156:15 |
| 270:21;273:21; | 59:5;61:14;62:17; | meaning (5) | medial (1) | message (2) |
| 275:18;276:10; | 64:17;66:15,15;67:15 | 59:10;60:2;6 | 87:12 | 43:1;74:18 |
| 281:20,21;284:6,12, | 16;70:7;72:7;73:16 | 69:6;119: | median (1) | messages (1) |
| 22;285:3;287:15,15; | 18;74:5;88:1;89:7; | meaningful (7) | 103:17 | 206:18 |
| 292:13;295:12;298:3; | 100:16;101:1,1,3; | 89:8;109:22; | mediate (2) | messier (1) |
| 299:18;300:13; | 102:12;106:8;113:20; | 227:17;234:4;278:18, | 302:8,15 | 272:10 |
| 301:15;303:6,6,7 | 126:18,21;127:2; | 20;297:19 | mediated (13) | messy (2) |
| 11;304:4;307:8; | 132:18,18;139:2,2,22; | means (17) | 97:4;98:17;99:7,19 | 242:12;250:4 |
| 309:10;327:13;332:7 | 140:3,9,9,12,14; | 27:12;59:14;66:1 | 103:8;110:21;119:4, | met (1) |
| $\boldsymbol{m a p}(1)$ | 142:22;146:18; | 68:13;69:3;93:1; | 14,20;120:3,7;302:6; | 193:17 |
| 194:15 | 147:16,22;150:14, | 104:3;105:21;137:6 | 309:13 | meta-analysis (1) |
| mapped (1) | 162:5;163:6,8;164:12; | 194:22;197:17;247:4; | mediators (3) | 191:11 |
| 197:1 | 165:12,15;175:22; | 257:6;268:6;279:17; | 75:21;123:21;183 | metabolic (29) |
| mapping ( | 179:20,22;184:2; | 291:8;315:12 | medical (2) | 32:3,8,14,21;3 |
| 194:13 | 185:1;192:20;227:2, | meant (2) | 146:20;252:1 | 12,15;34:3,6,17;35:5, |
| marginal (1) | 16;239:17;240:4,5,10; | 134:20;275: | medication (1) | 18;36:10;42:21;50:4; |
| 149:5 | 246:9,21;247:20; | meantime (1) | 155:10 | 66:6;153:4;224:9; |
| marginally | 248:4,7,7;250:6; | 55:18 | medicine (2) | 231:5;233:17;235:2; |
| 209:3 | 251:7;257:20;258:17 | measure (26) | 4:12;7:9 | 236:8,12;237:12; |
| marked (2) | 266:4,15;270:17; | 35:21;43:12;86: | medicines (1) | 238:1;242:15,19; |
| 61:7;66:10 | 279:8;280:12,13; | 114:5;119:9;131:18; | 160:9 | 318:16 |
| marker (3) | 282:7;284:17;288:11 | 137:18;141:7;149:9, | meeting (36) | metabolism (4) |
| 27:13;115:17;25 | 295:13,21;301:3; | 10;154:2;214:3; | 4:5,8,15,22;5:10,1 | 35:10;226:3; |
| markers (9) | 305:12;311:8;321:20, | 251:12;277:10;280:3, | 10:14;11:1,4;14:12 | 242:14;251:2 |
| 116:10;118:13; | 21;327:10;329:18,20, | 6,7;281:8;282:1; | 21,22;15:5,10,12; | metabolite (1) |
| 125:20;138:21;147:2; | 20 | 287:19;293:10; | 16:11;19:16;23:19; | 238:16 |
| 181:22;182:1,21; | maybe (73) | 296:13;305:13,14 | 24:2,6,9,21;28:14; | metaphor (3) |
| 252:6 | 4:15;8:16;11:11; | 315:5;316:7 | 32:21;36:12;53:9; | 52:8;217:17;333:3 |
| market (3) | 41:11;48:12;52:11,20; | measured (3) | 93:12;139:11;171:15; | metatarsalgia (1) |
| 8:1;26:16;316:21 | 54:20;58:17;70:1; | 31:18;124:6;316:1 | 182:13;186:8,13; | 311:11 |
| marks (2) | 71:22;82:13;87:8; | Measurement (2) | 258:22;294:3;323:21; | methodologies (1) |
| 256:11;257: | 98:18;118:20;125: | 13:18;288:13 | 334:10 | 210:20 |
| marrow (2) | 139:10;145:4;154:4 | measurements (1) | Meetings (3) | methodology (1) |
| 185:7,17 | 158:11;161:22; | 288:11 | 8:8;24:14;270:19 | 18:8 |
| Marta (1) | 165:16;166:1;168:12; | measures (40) | meets (1) | methods (2) |
| 192:11 | 170:16;171:6;177:4; | 8:10,16;9:14;12:3 | 140:16 | 211:3;310: |
| Maryland (3) | 178:13;180:19,21; | 13:20;14:1;44:2 | megadoses (1) | methylmalonic (1) |
| 254:19;274:2;287:3 | 183:3;192:14;194: | 113:4;114:21;146:2; | 227:20 | 248:21 |
| mass (1) | 203:6,8;204:21; | 188:15;190:8;194:15, | members (7) | metric (1) |
| 302:9 | 208:21;212:9;213:17, | 15;213:18,22;226:2; | 14:13;20:9;84:16 | 138:11 |
| match (2) | 21;214:9;235:5; | 229:7;254:6;277:16, | 85:1,5;121:22;169:4 | metrics (3) |
| 87:22;246:2 | 250:12;255:17;263:5; | 20;278:9,9,21,22; | membrane (2) | 200:3,14;277:18 |
| matched (1) | 264:13,17,18;265:19; | 280:2;281:13,19; | 59:14;60:1 | mexilitine (1) |
| 229:11 | 268:3,15,22;269:7; | 282:3;287:22;288:12; | mental (1) | 90:11 |
| material (1) | 276:6,8;284:15;295:3; | 294:4,7;296:16; | 261:16 | MGH (2) |
| 75:2 | 296:17;297:18;300:9; | 297:19;298:8;299:13; | mentally (1) | 255:2;261:12 |
| math (1) | 301:8;304:14;308:21; | 315:14;326:14;332:16 | 122:1 | mic (4) |

85:11;138:13;
206:4;267:7
mic] (15)
71:5;75:6,21,22;
85:9;130:2;131:6,10,
19,21;138:9;215:20;
245:5;252:18;288:16
mic]testing (1)
245:10
mice (1)
35:10
Michael (9)
135:12;145:22;
178:13;287:4;295:15,
16;296:6;297:21; 305:21
Michigan (5) 91:9;131:17; 170:16;297:4;326:20
micron (1) 212:15
microneurography (2) 310:13,17
microphone (1) 23:17
Microphones (1) 23:16
microscopy (3) 22:12;197:8;201:4
microvascular (1) 34:20
middle (1) 172:17
might (29) 38:15;41:3,13; 51:12;55:15;57:18; 70:6;86:16,17;118:17; 126:20;127:22,22; 145:1;150:2;164:7; 173:16;203:9;211:4; 231:10;239:17;241:1; 242:22;246:13;260:2; 264:21;284:4;289:12; 299:13
Milan (2) 56:7;162:7
mild (7) 147:13;148:20; 251:19;267:18; 275:18;278:6;313:20
milestone (1) 9:22
millimeter (4) 115:3,13;212:14,14
million (5)
30:5,11;39:3;235:8, 9
mind (10)
36:1;152:11;159:1; 222:21;230:22; 231:12;235:22;236:4; 248:10;253:5
mine (3)

40:5;255:15;290:10
minimum (6)
49:1;78:14;285:3,5, 11;294:15
minor (1)
163:18
minutes (10)
11:3;15:14;25:13;
154:8;172:22;323:1,
15;325:7;327:18;
328:16
mischief (1) 325:3
misleading (1) 97:20
mismatch (1) 268:17
miss (3)
106:8;165:15;310:3
missed (4)
130:3;162:16;
167:20;186:18
missense (2) 63:4;83:9
missing (9)
8:13;49:8;162:10;
176:16;179:22; 299:15;304:17,18; 308:20
mission (1) 7:2
misspelled (1) 12:10
mistake (1) 179:20
mistakes (1) 108:19
mix (3)
154:21;192:1;206:3
mixed (31)
95:8;97:16,20;
100:18;103:11;106:2;
148:7;189:14;192:5;
193:22;194:3,11,20;
198:15;199:4,10,17;
200:17;201:8,12,21;
202:11,18;213:3;
257:19;258:5;320:6,7; 321:3,8;328:13
mixed-fiber (1) 95:4
mixing (1) 293:2
MNSI (2)
190:4;237:1
mobile (2) 319:18,19
mobility (1) 268:5
modalities (4) 207:16;219:18; 220:2;230:3
modality (2)

| 86:2;331:17 |  |
| :--- | :--- |
| model (8) | $115: 11,14 ; 129: 13 ;$ |
| $66: 16 ; 102: 5,13 ;$ | $130: 17 ; 175: 22 ; 219: 4 ;$ |
| $135: 13 ; 164: 20 ; 324: 3 ;$ | $259: 12 ; 330: 2,7$ |
| mood (1) |  |
| $328: 6,21$ | $316: 16$ |
| models (7) | morbidly (1) |
| $35: 4,12 ; 164: 10,11$, | $236: 17$ |
| $17 ; 165: 11 ; 242: 7$ | more (142) |
| moderate (1) | $22: 9 ; 23: 10 ; 28: 12 ;$ |
| $31: 21$ | $30: 22 ; 31: 8 ; 37: 20 ;$ |
| moderator (1) | $41: 4,11 ; 43: 1 ; 44: 19 ;$ |
| $186: 4$ | $45: 1 ; 48: 1 ; 50: 17 ; 53: 9 ;$ |
| moderator's (1) | $54: 6 ; 57: 1 ; 60: 3,5,14 ;$ |
| $293: 6$ | $61: 18 ; 62: 20 ; 63: 17,17 ;$ |
| modern (1) | $67: 7 ; 68: 9 ; 70: 20 ;$ |
| $302: 3$ | $71: 10 ; 74: 18 ; 75: 7 ;$ |
| modernize (1) | $76: 1,9 ; 84: 10 ; 91: 8 ;$ |
| $14: 19$ | $92: 22 ; 93: 2,2,9,11 ;$ |
| modification (12) | $98: 6,6 ; 99: 22 ; 104: 12 ;$ |
| $7: 10 ; 10: 139: 15 ;$ | $105: 1 ; 106: 21,21 ;$ | 7:10;10:9;139:15; 140:2,12,19;141:4; 157:8;285:5;298:6; 317:4;319:21

modified (6) 274:22;275:7,13; 276:1;317:10,22
modifier (1) 141:6
modifiers (1) 84:10
modifies (1) 139:6
modify (2) 128:18;317:17
modifying (12) 140:4,10;283:10; 293:22;295:1,2;308:1; 314:22;315:2,7;316:9, 9
modulates (1) 129:1
molecular (4) 17:17;56:8;74:13; 162:18
moment (9) 126:5;150:5; 183:15;220:21; 222:19;240:9;253:21; 310:7;311:20
money (1) 216:2
monoclonal (2) 119:2;226:10
monogenic (1) 169:15
monolithic (1) 185:3
monophasic (2) 130:10;174:16
monovariant (1) 234:13
months (11) 21:7;114:17;

115:11,14;129:13;
130:17;175:22;219:4; 259:12;330:2,7
$\operatorname{mood}(1)$
morbidly (1)
236:17
more (142)
22:9;23:10;28:12;
30:22;31:8;37:20;
41:4,11;43:1;44:19;
5:1;48:1;50:17;53:9
61:18;62:20;63:17,17;
67:7;68:9;70:20;
71:10;74:18;75:7;
76:1,9;84:10;91:8;
98:6,6;99:22;104:12;
105:1;106:21,21;
107:4;108:18;117:8;
118:3;119:13;122:20;
127:11;129:20,21;
130:12;132:3;138:20;
139:18,18,22;140:15;
145:9;148:7;152:12,
17;156:6;160:21;
171:20;174:10;
175:12,18;183:6,16,
16;185:5,13;188:14;
190:10;202:7;203:8;
204:4;205:21;207:4;
212:19,22;214:9;
215:12;217:4;218:1;
220:18;221:13;
222:12,15;225:7,11;
226:4;229:10;231:22;
234:14,15;235:16;
240:4,20;254:13;
256:8;260:17;262:9;
263:6;265:6,7;266:6;
267:2;272:7,8,15,17;
273:11;276:20,21;
278:2;279:12;280:3;
281:17;282:1;286:3;
288:3;289:9,11;
291:21;293:4;296:3;
299:16;301:19;309:3;
317:12;319:3,17,18,
18,19;321:17;322:14
morning (11)
4:4;10:1;56:5;99:5; 123:17;168:8;186:10, 14,19;216:13;231:2
morphological (1) 297:1
morphology-wise (1) 297:14
most (70)
26:5,7;28:9;35:16;
39:11,17;41:19;42:22; 44:16;51:21;56:19;
81:3;82:3,6;99:19;

101:5;102:4,10,11; 104:1,19;109:6;
110:12;111:2;112:7, 17,20;132:17;134:3; 160:15;161:6,10; 172:19;178:3;189:22; 190:9,14;197:20;
198:16;200:9;203:17, 20;204:4,6;205:6,9; 206:14;213:6,13; 214:13;216:8;219:2; 226:3;228:8;231:4,6; 234:10;240:11;253:3; 260:16;265:19; 287:21;289:16; 294:13;296:4;316:6; 320:16,18;329:12; 333:18
mostly (4)
72:16;206:19;
274:13;290:22
mother (1)
61:1
motion (1) 93:8
motor (13)
217:20;227:6,15; 239:20;270:11,15;
271:19;291:17,21;
313:12,14;316:11;
331:2
mouse (2) 102:5,13
mouth (2) 125:5,16
move (7) 76:2;171:11; 272:10;279:7;304:9; 327:11,15
moved (1) 136:10
movement (1) 318:9
Moving (1) 36:21
MRC (1) 210:21
MRI (2) 48:10,10
much (63)
10:16;16:7;21:9; 33:19;36:7,22;38:15; 40:12;41:14;44:11,18; 45:1;56:16;68:10; 70:20;71:1;80:20; 88:21;90:18;104:7; 117:3;118:14;121:15; 123:19;143:2;153:1; 158:2;168:7;170:19; 182:11;183:6,6,16,16; 184:6;188:5;190:10; 192:4;198:18;200:5; 206:22;216:12;217:4;

221:12;225:7;226:21; 246:9;256:14;259:13; 269:5;270:7;286:12;
296:3;297:6,14;
304:18;306:11,13;
310:18;312:19; 316:19;317:11;334:5
multicenter (3) 239:10;272:6; 289:18
multifaceted (1) 286:7
multifactorial (5)
139:21;140:3; 241:9;251:8;266:18
multi-hit (1)
66:16
multiple (21)
6:11;32:6;36:17; 76:6,10;81:7;82:6; 96:17;144:15;164:10, 17;171:5;226:22; 231:20;248:4;258:8; 267:19;273:3;274:21; 318:14,18
multivariate (1) 234:17
multivitamins (1) 226:22
Muscle (6)
13:21;100:5;125:5; 200:12;269:22;271:8
must (7) 17:18;140:20; 217:12;249:4,5;
309:12;328:18
mutated (1) 66:2
mutation (39)
59:3,22;60:5;61:4,9, 12;62:2,2;63:3,13,13; 64:7,21;65:2,10;66:9, 11;67:21;69:2;70:12, 12,18;71:22;72:19; 73:5;75:9;77:2;81:8, 10,19;87:14;155:7,13; 159:5;161:9;170:7,8; 183:4;241:2
mutations (68) 41:3,4;42:1,4; 56:12;58:14;59:5; 62:5,11;63:4,6,7,10, 20;64:11,13,21;67:13, 18;68:21;69:19;70:13, 18;71:8,13,17;72:13, 15;73:13,16,19;80:2, 3,5;81:3,6,7,11,15,18, 22;82:6,11,14,16,20; 83:10,22;84:1;85:4; 88:19,22;90:1;95:18; 153:22;155:15; 158:15,16;160:20; 161:1,18,21;167:5,12,

14;232:16;309:9;
319:11
myasthenia (1)
171:3
myelin (1)
105:6
myocardial (1)
127:6

| $\mathbf{N}$ |
| :--- |
| naive (3) |
| $47: 16 ; 298: 11 ; 300: 9$ |
| naïve (1) |
| $300: 8$ |
| name (4) |
| $23: 18 ; 24: 1 ; 41: 8 ;$ |
| $255: 14$ |
| named (2) |
| $40: 18 ; 253: 8$ |
| names (1) |
| $194: 7$ |
| narrative (1) |
| $233: 5$ |
| narrow (1) |
| $242: 18$ |
| Nascimento (1) |
| $130: 22$ |
| national (2) |
| $15: 20 ; 57: 3$ |
| natural (15) |
| $26: 19 ; 78: 115: 5 ;$ | 26:19;78:4;115:5; 143:12,21;145:14,19, 20;148:8,15;221:22; 246:3,8;317:17;329:9

Nav (32)
40:16;56:12;58:10; 61:17;67:14,14;76:18, 18,21,22;77:5;79:2,7; 81:9;82:3,7,16,20; 83:4;84:4;154:11,14; 155:7,9,19;156:8,18; 157:13;158:5;164:7; 167:12,14
NCV (4)
151:9;198:11,14; 209:21
NCVs (1)
190:6
NDS (1) 274:22
near (1) 134:14
nearly (4) 23:12;41:21,22; 136:5
necessarily (14) 57:18;105:6;118:9; 141:3;147:16;161:16; 171:15;182:13; 219:21;251:13; 272:12,22;282:6; 289:17
necessary (6)
7:5;16:10;19:19; 21:13;240:21;282:8
necessity (1) 23:4
need (84)
16:6;17:21;19:10; 22:19;26:20;37:13; 43:21;48:12,14,16; 50:9,19;51:2;53:4,7; 55:10,11,12;68:15; 70:21;84:11;85:5; 100:8;104:9;107:2; 118:4;128:16;129:3, 21;130:11;134:9; 135:22;140:10;141:4, 6;167:7,17;170:7; 175:17;176:13;180:4, 6,7,8;181:20,21; 182:14;183:6,16; 187:7;195:13;214:8; 218:18;221:1,20; 233:10;237:16;239:3, 17;240:2;245:11; 248:13;249:1;250:16; 255:18;265:7;266:4; 268:22;276:11;284:8, 9;292:7,20;293:1,2; 304:6;306:11,13; 314:4;317:19,20; 320:11;329:17;331:9 needed (1) 243:2
needles (2)
325:12;328:3
needs (15)
16:16;54:9;55:10; 69:12;174:13;218:1, 19;227:22;233:4; 235:3;239:21;293:9, 19;327:22;329:15
negative (9) 119:11;120:12,13; 150:13;190:1;198:14; 212:2,5;229:6
negatives (1) 330:14
negotiation (1) 315:12
neighbor (1) 313:22
neither (1) 256:20
nerve (82)
11:9,15;12:4,5; 13:21;21:4,7;22:15, 19;23:4,5;27:8;42:14; 48:14;54:2;57:7;
78:15;79:10,12;80:9; 86:1;98:2,3;100:22; 101:11;104:18;
105:19;115:2;122:10; 125:22;130:20;

133:11;136:6;137:19; 139:7;140:14,15; 146:2;151:7,11; 176:16;184:22; 188:12;195:20,21; 196:9;197:11;198:7, 10,12;200:11;201:7; 204:14,15;205:8,18; 206:11,12;207:1,12; 208:22;209:10; 211:22;213:13;220:4, 5;223:22;228:11; 230:4;238:3;274:9; 276:6;278:8;279:5; 281:8,11,16;282:2; 303:8;306:21;308:17; 321:14
nerves (4)
34:22;35:1;115:1, 13
net (2) 137:16;254:2
Netherlands (5) 18:6,11;56:4;162:6; 173:8
network (2)
187:12;210:22
Networks (1) 5:18
neural (2) 98:7;118:21
neuralgia (2) 165:5,13
neurite (3) 65:8,11,14
neuro (1) 178:14
neuro-diab (1) 33:8
neurofascin (2) 105:4;184:14
neurography (1) 310:22
neurologic (1) 273:12
neurological (2) 236:19,20
neurologist (2) 111:22;298:12
neurologists (1) 166:16
neurology (10) 4:11;9:20;11:13; 14:3,7;124:1;215:15; 252:16;287:3,4
neuromuscular (2) 57:4;225:19 neuron (6) 72:19;183:4; 313:12,14;316:11; 331:2
neuronal (2) 142:21,22
neuronopathy (1) 107:14
neurons (4)
61:20;64:1;158:7; 217:20
neuropathic (18) 28:8,13,18,20;36:5; 96:7;97:13;100:6; 133:10;210:22;307:5, 7,9;311:6,10;314:10; 315:17;333:1
neuropathies (63) 13:7;26:1;29:11,18; 31:13;37:10;40:8,18; 45:18;50:21;57:21; 69:22;78:10,12;87:1, 19;94:2,22;95:4,17; 96:17,20;97:1,17,21; 98:4;99:6;100:19;
101:17;103:4,12;
104:13,17,20,22; 105:14;106:4;107:5,9; 109:3;113:14;117:17; 121:14;130:8;135:6; 136:19,20;147:9; 179:15;232:9;264:2, 12,12;279:15;280:1; 285:18;301:18; 308:11,15;309:5; 320:7,8;329:17
Neuropathy (655) 4:8;7:11;10:9;11:8, 17;12:1,16,22;13:5, 19;14:2,4,9,15,19; 15:4;16:2,6,8,9,11,13, 16,22;17:5,8,10,11,15, 18,21;18:18;20:19; 21:16;22:6,10,18; 23:4;25:6;26:2,4,6,10, 10,17;27:2,6,10,14,16; 28:1,10,16;29:2,8,16; 30:3,8,12,14;31:9,11, 12,15,21;32:5,5,12,19; 33:7,14,17;34:1,4,5,7, 8,14,14;35:5,7,11,12, 22;36:4,11,18,19,22; 37:2,6,16,19;38:2,7, 21;39:4,12;40:1,3,6; 41:2,5,12,20;42:8,12, 13,17;43:4;44:3,14, 16,21;45:10,12;46:2, 20;47:2,9,19;48:7,11, 20;49:2,9,12,13,16,22; 50:4,8,11,20;51:1,3,5, 7,14,14,16,18,19,20, 22;52:2,7,7,22;53:11, 17;54:3,15,21;55:5, 14;56:11,18;57:6,11, 12,17,18,22;58:18,20; 59:2;60:15;62:4;63:1, 18;67:15,20;68:7,7, 12,13,19,20;69:3,4,5, 10;70:3;71:10;73:21;

77:14;78:3,3,7,11;
79:1,8,9,17,21;80:4,9, 14,16;83:3,5,8,10,12, 17;84:1,2;86:1,5,11, 14,19,20;87:11;89:11; 91:14;93:13;95:8; 96:1,4,5,8,15,16;97:3; 98:12,13,17;99:4,6,9, 19;100:7,14,19,21; 102:9,18,21;103:7; 104:1,3;106:1,3,16,18, 20;108:8,15,15,17; 109:15,20;110:4,4,9, 12,20;111:6;112:3,5, 20;113:17,20,22; 114:7,16;115:10,18, 22;117:2,14,22; 121:20;122:2;123:13, 22;124:3,20;126:9,22; 127:2,13;128:5,6,13; 130:13;131:18;132:9, 12,16;133:3,7;136:9; 137:11,17;139:13,13, 22;143:5,13,16;145:5, 19,21;146:4;147:4; 148:7,8;149:3,13,14; 150:2,18;151:12; 152:9;153:3,14,15,17; 154:13,18,22;155:1,1; 157:4,15,22;159:6,12, 14;160:3,10,14,15; 161:2,19;163:16,17; 164:14,14;165:2,12; 166:4;171:21;172:6; 174:9,15,22;175:5,13; 176:17;177:2,7,11,18; 178:2,4,19;179:13; 184:11,14;185:19; 188:1,13,18;189:3; 190:3,4,16,20;191:1,4, 7,7,20;192:4;193:7, 19;194:1,2,12;195:9, 16,22;196:2,12;197:3; 198:1;199:10,17,19; 200:16,22;201:19; 203:5,13,17,22;204:8, 10,19;205:5,11,13,18; 206:8,17,17;207:12; 208:2,3,12;209:5,9; 210:5;212:4;213:3,20; 214:11;216:18,19,21; 217:7,12,14,19,21,22; 218:4,5,12,12,14; 219:4;220:11,13,21, 22;221:13,15,16; 222:8,18,22;223:1,2, $12,15,18 ; 224: 2,11,16$, 21;225:2;226:15; 227:5,6,15,21;228:6, 10,20;229:22;230:19, 21;232:2,11,20;233:6, 18;234:5,7,14;235:3, 12,19,21;236:2,2,9,10,

20;237:2,6,7,12; 238:4,8,11,14;239:7, 13,13,20;240:7; 241:19,20;242:8,20;
243:3,6;244:12,17; 246:22;247:2,8,9; 248:3,4;249:10,14,21; 250:2,16;251:11,16; 253:8;254:18,21; 255:2,4;256:11,13; 257:12;258:4,17,17; 260:4;261:1;263:10, 13,19,20,22,22;264:3, 4,9,15,17;266:14,20; 267:9,17,20;268:13, 20;269:20,21;270:18, 20,22;271:10;272:13, 17,21;273:2,3;274:4; 275:8,19;276:2,5,15; 277:12;278:6;280:16, 19;283:5,9,22;284:13; 285:6,11;286:4;289:8; 290:11;291:2,3; 292:11;294:14;297:5, 13;298:7,15,16; 299:17,18;300:12,15; 301:11,12,16;302:18; 303:15,16;304:22; 305:1,4,5;306:6,8,18, 20;307:4,6,12,17; 308:22;309:7;310:1,5, 6,12,21;311:19,22; 312:1,14;313:9,20; 314:15,16;315:5; 317:5;318:13;319:5, 22;320:7,13;321:10, 14,19;322:2,4,12; 325:10;326:19;327:8, 9,17;328:14;329:7,12, 14;330:11;331:14; 332:2,3,8,17;333:13; 334:1
neuropathy's (1) 224:4
neurophysiological (1) 214:3
neurosensory (1) 197:10
neurotoxic (1) 38:19
nevertheless (1) 202:8
new (14)
17:8;22:11;33:13; 38:10,11;148:21; 149:8;171:12;217:3, 10;224:19;249:21; 299:9;312:6
newly (2) 223:4;257:18
news (1) 187:15
next (23)

9:7;11:2,6;15:14; 25:12;40:11;92:14; 150:6;151:1;155:17; 166:1;186:6;188:1; 215:13;233:15; 252:15;253:18; 259:13;260:16;294:3; 306:17;313:21;323:14
next-generation (4)
87:9;162:22;168:6;
232:12
NGS (1)
74:10
NHANES (1)
228:22
nice (5)
9:9;71:7;107:12;
227:3;238:20
nicely (2)
16:4;64:9
night (2)
261:9;333:15
NIH (2)
6:20;186:18
NIH's (1)
187:1
NINDS (1)
324:6
nine (1)
238:8
NIS-LL (3)
274:22;284:15;
291:15
Noah (3)
38:20;277:4,5
Noah's (1)
278:15
nociceptive (1)
32:9
nodal (1)
105:2
nodes (1)
105:5
non-clinical (1)
89:7
non-conventionally (1)
145:1
none (8)
104:9;135:9;217:8;
232:15;255:11;
325:13,22;326:1
nonexistent (1)
189:20
nonhuman (1)
193:5
non-idiopathic (1)
219:8
non-length (2)
107:6;117:18
non-length-dependent (16)
106:18,20;107:14;
108:2;118:5,7;119:21;
124:2;130:8;175:13;

176:17;177:1;217:22; 227:20;305:4;329:16
non-myelinated (1) 318:18
non-neuropathic (1) 311:13
non-painful (14)
27:2;32:18;51:1; 69:1,14;80:4;82:20; 83:3,16;89:1,5,12,15; 195:6
nonsense (1) 63:6
nonsignificant (1) 274:13
non-specific (2) 118:22;138:1
non-synonymous (1) 82:8
nor (1) 256:21
normal (44) 23:5;43:14,15; 48:14;54:16,20;55:7; 65:14;72:16,17;79:12, 12;80:9;86:1;87:11, 12;101:1,2,11;102:19; 105:17;115:6;195:20; 196:9,14;198:12,14; 199:12;202:2;205:8, 18;206:12;209:2,11; 219:5;230:3,4,5; 231:18;237:10;249:5; 268:7;275:20;321:14
normally (2)
111:21;246:5
normative (1) 60:18
North (2) 95:5,7
note (2) 92:2;134:18
noted (4)
80:18;152:5;254:3; 259:17
Noterman (1) 32:16
notice (1) 226:2
noticed (2) 89:21;277:11
notion (2) 6:10,21
notions (1) 134:7
novel (1) 175:6
NPS (1) 325:13
NPSI (2) 296:21;297:7
NTSS (1) 276:19

NTSS-6 (6) 255:2;262:3; 277:13;285:10; 294:14;315:1
NTSS-8 (1)
256:9
nudge (1) 327:7
NuFACTOR (1) 94:17
numb (1) 117:20
number (58) 8:17;14:13;17:12; 18:22;19:3;21:20; 36:3;38:14,20,22; 49:19;59:2;68:21; 72:10;74:14;77:22; 78:17;80:22;87:22; 95:19,20;104:13; 107:7;109:2;115:21; 127:7;129:10;134:3; 138:19;141:12;162:3; 166:4;168:15,16; 169:3;170:5;177:16; 184:3;200:4;219:15; 221:14;227:9;229:7; 231:17;232:17;237:3, 16;245:13;248:11; 253:2;261:22;262:13; 285:17;311:9;312:17; 316:14;321:11;328:15
numbers (16) 29:21;51:16;71:7; 79:19;87:18;88:21; 108:6;111:15;114:11; 122:22;129:11;168:8; 178:21;227:4;262:15; 274:11
numbness (5) 141:21;219:11,12; 328:4;332:12
numerical (3) 204:5;260:20; 305:17
Nurcan (15) 123:10;126:6; 142:13;146:6;148:11, 13;164:2;167:22; 176:14;181:1,6; 182:17;197:19; 309:19;315:19
Nurcan's (2) 123:13;150:22

## 0

## Oaklander (28)

46:14;47:10,11; 54:8;89:21;90:19,21; 91:13,18,20;131:4,5, 17;132:12;138:6; 142:14;143:9;146:7;

150:16;184:19;245:4,
8;301:19;313:1;
324:10;325:17,20;
333:8
obese (3)
177:16;236:17; 242:17
obesity (3)
233:18;235:2; 246:20
objective (19)
20:21;114:21;
129:3;137:18;138:10, 21;141:6;149:10; 175:18;186:5;188:14; 189:3;190:19;214:2; 278:21;281:7;282:1; 298:9;299:14
objectively (4)
139:5;147:2;
333:16,22
objects (1) 267:15
obligatory (3) 17:19;20:21;249:4
obscure (1) 47:15
observational (1) 191:19
obsessive (1) 166:15
obtain (1) 191:17
obtained (1) 79:5
obviate (1) 233:10
obvious (4) 27:9;29:7;43:3; 287:20
obviously (28) 53:6;73:11;79:3; 85:5;88:21;89:16; 100:13;118:19;119:5; 121:16;125:3;129:17; 135:4;138:8;143:8; 145:20;146:8;172:19; 207:16;229:5;243:2; 247:17;249:20;254:1; 269:4;271:7;272:4; 289:15
occur (2) 104:17;135:15
occurred (2) 7:1;135:14
occurrence (1) 326:2
occurring (3) 16:20;122:9;281:15
occurs (1) 40:3
Octapharma (1) 94:17

Off (28)
30:16;71:5;75:6,21, 22;85:9;108:19; 109:13;130:2;131:6, 10,19,21;138:9; 146:22;178:8,10; 215:20;216:17;245:5, 10;246:5;252:18; 285:14;288:16; 295:15;303:7;306:6
off] (1) 206:4
offline (1) 280:22
often (10)
45:1;57:13;99:17; 105:20;175:12; 226:22;259:22; 277:13;284:14,21
oglioclonal (1) 109:19
Ohio (1) 111:11
old (8)
31:5;61:3;108:20; 235:8;238:8,9;247:8,9
older (5) 31:8;38:1;55:1; 80:20;255:3
olds (1) 246:9
once (10) 93:2,9;116:21; 180:12;217:12;254:5; 273:8;285:1;292:21; 327:13
one (216) 13:19;15:17;19:9, 17;20:17;21:4,11,14; 24:13;27:14;29:9; 31:12;32:10;34:15; 36:17;40:2;42:22; 44:9;45:5;47:6;55:8; 58:3;61:18;62:21; 63:15,15;64:2,3,21; 65:4,10;71:10,22; 73:8;74:1;75:14;76:1, 11,12,12,15,19;77:4,5; 80:16;81:4,8,9;82:15; 86:16;87:14;88:5; 89:21;92:12,14;93:2, 4,4,11;96:2;98:15,15; 99:13;102:3,22;109:4, 6,10;112:2,7;116:4, 13,15;119:8;120:7; 122:12,17;126:4; 127:5,12,13,14; 128:15;129:11; 133:21;134:15,21; 135:2;136:18;138:7, 11,14;140:2;141:12; 148:21;149:7;154:1; 159:11,15;160:18;

161:3;162:20;163:10; 165:17,20;168:10,13; 169:7;170:6;172:2; 173:2;175:1,10; 176:12;179:9;182:8; 188:7;198:14;199:4, 10;203:6;210:3,6; 211:10,21;212:7; 215:4;220:8;226:5,9, 16;227:22;228:3; 231:22;232:19;233:4, 19;235:3,16,22;237:9; 239:17;240:13;
241:11,13;243:4; 244:14;247:19;248:1, 8,16;249:6,8;250:12; 251:21;253:10,11,22; 257:7;258:7,8,21; 260:20;261:10,12; 262:3;265:16;266:8; 267:6;268:4;271:4; 273:10,19;274:1; 275:22;277:21;
278:10;280:22;281:1, 3;282:22;283:6; 288:18;291:20,21,21, 22;293:3,4;298:4; 302:13;303:14,21; 309:20;311:15; 317:16;318:10,11,12, 20;319:13,14;320:5,8; 321:21;326:15;
327:20;328:7,8,12,19, 21;330:13;332:1,4; 333:2
one-hour (1)
55:22
ones (13)
28:9;29:5;37:21;
44:5;89:19;115:12;
130:12,15;168:8;
174:21;271:11;297:5; 309:6
one's (2)
227:11;251:12
one-third (1) 207:14
one-trick (1) 233:20 ongoing (8) 7:13;8:5;142:21; 183:13;248:11;250:1; 265:18;269:11
online (1)
187:13
only (70)
20:17;23:7;27:18; 70:11;71:16;72:2; 75:1,11;81:8;82:1,15; 85:20;89:18;91:5; 95:14;100:5;107:5; 113:18;124:14;129:9; 137:8;138:3;146:7;

154:17;160:2;161:3;
164:21;166:1;167:13;
176:18;179:16;183:3;
188:18;189:2,20;
193:17;194:9;198:7,
11;201:2,17,22;
202:14;204:9;208:16, 17,18;213:11;221:17; 222:11;229:14; 234:18;241:11;242:8, 15,16;243:18,19; 270:21;275:13,22; 280:6;281:1;297:18; 304:8;312:11;313:2; 317:13;327:18;332:13
onset (12)
64:14;87:11;97:12;
102:1;103:3;119:20; 127:21;130:8,13; 174:15;232:20;329:6
onto (2)
92:20;327:11
open (6)
70:10;99:2;131:5;
287:15,21;288:2
opened (1)
182:10
opening (2) 62:10,12
operationally (1)
304:18
opinion (5) 52:9;90:8;163:16; 315:11;316:8
opioid (2) 187:5,8
Opportunities (1) 5:17
opportunity (2) 35:13;47:7
opposed (7) 116:13;220:14; 246:8;258:18;286:4; 314:15;322:3
opposite (2) 189:15;194:19
optimal (1) 289:3
options (2)
70:2;262:1
oral (3) 243:20;250:16; 251:17
orange (1) 265:4
order (14) 22:20;26:16;29:2; 33:12;34:2;38:3; 39:16;45:16;49:3; 50:14,16;167:4;316:4; 327:11
ordering (1) 91:14
organizations (2) 6:16,18
organize (1) 138:4
organ-specific (1) 116:9
original (2) 135:13;280:14
originally (1) 7:7
osteoarthritis (6) 156:20;157:3; 158:1;164:13;166:14, 16
Osvaldo (1) 130:22
others (14) 42:5;64:8,12;81:9, 20;85:10;147:10; 190:11;209:8;210:21, 21;242:10;271:5; 304:11
others' (1) 73:22
otherwise (2) 41:12;150:11
ought (2) 218:10;244:3
ourselves (1) 308:18
out (77) 5:6;6:22;15:4;20:5; 25:8,17;30:13;33:2, 11;35:3;38:9;40:13; 43:17;46:3,5;48:7; 51:12;53:14;56:19; 78:17;80:22;81:5; 84:7,16,20;99:1,12; 100:8;104:7,20; 110:15;121:19;123:8, 11;132:7;133:5,8; 136:11,13;142:3; 147:12;148:4;164:10; 165:9;175:4;177:17; 179:20;180:5;183:14; 193:16;194:5;196:22; 198:4;199:2;207:12; 217:13;221:1,5;226:1; 227:7;237:14;239:2; 242:21;254:5;255:15; 265:11;277:1;293:18; 302:19;303:17; 306:22;308:6;309:15; 314:18;320:1;321:3; 330:21
outcome (25) 8:10,16;9:14;113:4; 114:5;119:8;129:19; 138:22;143:1;149:9; 154:2;157:5;254:6; 277:16,19;280:2; 281:17;287:19; 293:10;294:4,6;

| 299:13;315:14;316:7, | $174: 18 ; 268: 8,19$ | $29$ | paroxysmal (4) | 75:15;87:14;95:18; |
| :---: | :---: | :---: | :---: | :---: |
| 8 | 279:3;290:17;291 |  | ,62 |  |
| utcomes (12) |  |  |  | 2: |
| 129:16;135: | P |  |  | 84 |
|  |  | 32 |  | pathologic (2) |
| 181:13;182:3;258: | pain | 14,16;332:2 | part (35) | 108:2;314:1 |
| 276:4;292:19,20; |  | pain | 12 | athological (2) |
| 296:20 | 11;26:21;27:13 | . | 8;32:3;49: | 72:12;137:19 |
| ou | 9,11,13,18,20; | ' | 4,19;94:22; | ally |
|  | 9;36 |  |  |  |
| outnumbe | 42:2,5;57:13;58:15 | pale | 58:7;186:22;196:7 | pathology (30) |
| 50:5 | 61:5,13;62:14,21; | 59:2 | 0;197:16;210:16; | 97:21;100:17 |
| outpatien | 63:16,17,18,19;67:1 | palpitatio | 213:2;220:14;243:21, | 106:10,16;118:4 |
| 315:22 | 75:13,18;76:7;77:1; | 261:7 | 1;250:6;270:4; | 19:21;120:9,1 |
| tp | 80:6;83:2,2;89:7,8,10 | , | 279:20;290:19 | 4:17;125:6;126:10; |
| 260:20 | 17,19;97:13;99:7,22; | 24:16;55 | 293:14;298:17 | 131:11;132:3,8,13; |
| outsid | 102:6;110:12;112:4; | 10,11;92:10,10;130:2, | 03:17;305:15 | 33:4;135:6,12,1 |
| 24:6;50:3 | 115:15;116:17; | 5;134:1 | 15:10;329:13;333 | 142:8,9;150:19; |
| over (46) | 119:20;121:6,7;125 | 174:5;223:20;232: | participant (1) | 79:21;275:17 |
| 8:22;9:18 | 127:6;128:21;129:1,9, | 286:18,20;287:6; | 249:8 | 81:15;302:2, |
| 13 | 19,19,21;130:18; | 300:21 | participa | 321:10;326:3 |
| 33:17;39:4;43:14 | 133:2,3,5,9,11;137 | paper | 222:17 | pathophysiologi |
| 52:16;67:19;68:1; | 8,11,12;138:8,18; | 23:21;42 | particip | 58:4 |
| 79:4;87:8;90:5;93 | 139:1,2,9;140:14; | 47:11;64:22;68:17 | 24:18 | athophysiology (3) |
| 143:6,6,15;147:10,14, | 141:1,18;149:9,15,1 | 72:8,9;73:12;79:1 | tici | 126:3;180:7,17 |
| 16,17,22;148:1; | 18,22;150:4;154:12, | 95:3;98:21;106:11 | 6:17 | pathway (5) |
| 151:13;1 | 15;156:7,8,14,19,19 | 107:12,19;110:1; | partic | 7:22;8:2;58: |
| 175:21;181 | 20;157:6,11,14,20 | 112:8,12;115:20 | 29:2; | 287:17;320:9 |
| 223:3;231:21;232 | 158:2,17;160:11,18 | 116:1,2,3;122:5,1 | 71:6;172:1;214: | thways (1) |
| 10,21;235:8;236: | 164:8,18;165:4;166: | 123:4,12,20;124:1 | 228:17;235:20;248:7; | 129 |
| 14;238:5;264:6; | 9,13,17;175:17,20 | 126:13;131:15; | 257:8;261:11,20; | patient (1) |
| 267:2;270 | 176:3,7;183:3,1 | 135:13;162:2,2;215:6; | 265:5,17;266:1 | 6:18;16 |
| 307:16 | 187:7,9,11,12,16 | 227:3;229:20;239:3 | 269:9;270:7;272:1 | :18 |
| erall | 189:5,18,19;191: | 243:16;249:2;269:18; | 281:2;292:10;293: | 46:1;60:4;61:7;63:19 |
| :10;3 | 195:14;204:4;205: | 280:14;304: | 301:5;321:8;329:5 | 64:3;79:9;80:20;81:8 |
| 49:3;107:9;204:20; | 19;210:22;213:17,18 | papers | particularly (17) | 9;82:22;83:5,11;87 |
| 256:4 | 18,19;214:2;219:12, | 13:17;23: | 29:5;102:13;113:4 | 10;88:20;89:11,17; |
| overarchin | 13,13;254:6;261:17 | 111:3;115:4;175:8 | 135:5;224:10;266:16; | 90:17;91:4;100:21; |
| 302: | 283:16,16,18,21; | 191:6,17;192:19,2 | 273:10;274:12,14; | 101:2,20;102:14; |
| overcome | 286:2,4;298:4,17, | 22;193:3,6,12;194:11, | 278:16;285:4,9,17; | 114:22;117:7,20; |
| 211:18 | 299:2,4;300:2,3,1 | 12;195:10;206:6,6; | 291:4;292:17,21; | 119:19;120:8,14; |
| overcomp | 01:17;302:13;30 | 215:2;221:15,15,1 | 300:22 | 121:6,7,12;125:4,13 |
| 321:18 | 305:16;307:5,5,7,7,8, | 2:5;228:3;231:7 | particula | 16;128:6,19;136:21, |
| O | 21;309:11;310 | 0.21 | $250 \cdot 6$ | 22;137:6,10;141:18; |
| 100:12;1 | 311:6,10,13;314:10 |  | part | 49:18;156:14;161:3 |
| overlapped | 315:17;316:12;317:5 | 197:20;238:2 | 38:20;64:13; | 65:6;168:11,14,20; |
| 63:2 | 319:2,18;325:10,12 | parameters (15) | 82:3;84:4 | 173:15;174:12,17; |
| overlap | 16,19,20;326:5;328 | 88:12,14;189 | partners | 77:10;190:18; |
| 99 | 17,18;332:13;333 | 4:14;196:13;197:5 | 5:10,18;6:11, | 191:21;193:11,1 |
| overrepr | , |  | parts (4) | 195:4;197:6;203:9 |
| 229:8 | 27 | 200:15;213:17;214: | 53:10;162:1 | 210:5;217:12,19; |
| oversubs | 32 | 289: | 167:20;259: | 224:12;232:3;235:4; |
| 53:1 |  | paraprotein | past (4) | 239:19;240:14;241:1; |
| overt | :12:68:6,12,19, | 38.16 | 2-1 | 243:13;249:13; |
| 216:1 | 69:1,3,4,9,11,13,21 | paraprote | 212: | 264:15;267:5;280:7; |
| overview | 80:3,13,16,18;82:20; | 239:4 | patch (1) | 297:17;305:19;306:7, |
| 14:3;203:18 | 83:16;84:2;87:1;89:1, | parasthesia/dysesthesia (1) | 59:7 | 8,10,12,17;307:4,10, |
| overweight | 5,15,18;99:19;100:14; | 328:20 | patchy (1) | 12;309:22;311:22,22; |
| 242:17 | 102:18;131:2;133: | paresth | 04:15 | 313:19;315:21; |
| own (15) | 153:15,17;158:1 | 195:1 | path (2) | 318:11,19,20;31 |
| 67:2,18 | 160:10,15;170:2,4 | Parkinson's | 321:3 | 322:20;325:15; |
| 73:15;114:12;121 | 177:1;195:5;234:7,1 | 53:16;132:8;317:7 | thogenic (14) | 327:22;328:8,18 |
| 130:10;134:6;157:15; | 235:20;236:2,9;238:4; | 11,18;318:4,10,10,11 | 66:13,21;67:11,21; | 332:11,14,19 |

```
patient-(1)
    253:20
patient-centered (1)
    292:19
patient-oriented (1)
    292:19
patient-reported (7)
    82:22;147:20;
    277:16;281:17;
    305:10,14;328:4
```

Patients (403)
11:18,22;13:5;
17:15;18:3,14;26:12,
13,18,20;27:1;30:8,
11;31:2,13,14,17,20;
32:11;33:5,9,14,20,21,
22;34:2,12,18;35:19;
36:2,4,5,8,14,20;37:1
7,20;38:2,10,12,17,22;
39:1,3,8;40:1,22;
41:12,19;42:1,5,8,11,
19;43:2;44:22;45:12;
49:15;50:20;51:2,6,
21;54:1;55:6;56:9;
58:1,18;59:1,3,19;
61:12;62:7;63:2,13;
64:7,16;66:9;67:19,
19,21;70:11,17,18;
71:9,11,20,21;72:11;
74:12,21;75:12;78:6,
7,8,11;79:1,7,11,18,
19,21;80:7,13,15,18;
81:6;82:5,6;83:1,9,12;
84:1,2,16;85:3,19,22;
86:11,14,19,20;87:16,
22;89:22;91:15;94:2,
5,6;95:11;99:11,14,
16,19,20;100:2,5,14;
101:5,22;102:1,11;
103:3;105:16;106:9,
15,17;107:13,17,21;
108:3,6,7,10;109:13,
14,16,19;110:3,14,14,
15,16,17,20;111:4,5,7,
9,13,14,17,19,22;
112:6,11,14,14;113:7,
18,18,21;114:1,2,6,7,
10,14;115:9,13,15,17,
21;116:7,18;117:1,4,
6,9;121:3,5;123:22;
124:2,8,12;125:15;
127:17;131:20;132:8;
133:9;136:5;141:21;
142:2,6,19;143:6,14,
14,15,16;144:1,2,4,10,
21;145:2,7;146:4,10,
11;147:18,19;148:6,
16,19;149:1;150:14;
152:8;153:21;154:17;
155:6,11,12,14,21;
157:11,22;159:22;
160:16;161:7,9,15,19,
20;163:13,14,17,19;

164:20;167:5;168:4,6, 12;169:3,8;170:1,5, 17;172:8;173:6; 174:9;175:1,5,5,12,14, 20;176:18,21;177:6, 14,21;178:16;179:1,7, 22;187:7;192:2;193:7, 20;194:2,6;195:1; 196:21;198:1,6;199:2, 5;201:9,10,14;202:2; 203:14,16;204:2,11, 19;205:12,15;206:16, 20;207:21;208:1,7; 209:14;212:4;213:7, 21;214:10;222:22; 224:18;225:4;226:15; 227:4;228:9,19; 229:21;230:8,18; 231:3,4;232:10,13,16; 234:11;235:13;237:5, 7;238:7;239:12; 241:19;242:15,17,22; 244:16;246:4,6,18,20; 250:2,3;251:19; 255:20;256:16;267:3, 13,17;268:8,10,13; 269:10;277:8,13; 279:13;283:3;289:4, 14;298:18;299:3; 300:15;304:6;307:8; 308:16;309:2,3,4,8; 310:3,9,14,20;311:5,9, 11,21;315:13,18,20; 316:3,5,17;318:10; 321:7,13,17;322:1; 323:16;324:16; 330:22;332:7;333:13, 16,22
patient's (1) 91:3
patients' (5) 26:21;110:22;
138:1;172:11;181:13
pattern (7)
126:1;146:11,15,16; 201:14;261:16;307:14
patterns (2)
49:18;50:12
Pause (1)
286:22
pay (2)
107:2;325:5
PCR (1)
124:8
peer-reviewed (1) 9:19
PELTIER (11)
46:15,19;84:14,20; 159:10;161:12,14; 318:2,8;330:9;331:3
penetrant (2)
64:13;69:16
people (86)

5:21;22:16;23:22; 38:11;43:14;51:17; 52:20;54:6,9,13;55:3; 80:17;90:5;92:20,22; 93:1;108:13;113:11; 116:5,13;122:21; 128:13;130:9,11,19; 134:3,19;142:10,19; 143:7,19;148:13; 151:16;164:6;172:14; 173:20;174:14; 175:15;177:3;192:9; 203:15;206:3;209:15; 211:3;212:13,19; 214:22;219:15; 223:12,18;224:7; 225:12,22;226:1,20; 227:9;231:20;232:18; 237:4;241:13;246:16; 248:12;249:19,20; 250:14,17;258:13,13; 259:5;260:11;266:13; 276:22;283:13;285:4, 19;287:8;288:20; 289:10,17;291:7; 302:22,22;305:9; 308:5;320:16,18
people's (1)
49:14
per (5)
39:17;115:2,13;
151:12;160:20
perceived (2)
268:19,21
percent (123)
30:6,19;36:10;
37:17,20;38:15,17;
39:1,22;67:22;68:20;
71:12;77:5;81:15;
82:1;88:9,11,12,14,14,
18;90:21;95:8,12,20;
105:18;107:6,7,17,18;
109:14,17,18;110:2;
111:5,7,12,16,16;
112:6,13,22;113:2,9;
116:18,19,21;131:16; 134:11;143:16;
144:11,12,18;164:21; 167:13;170:17;
172:12;175:10,11;
184:22;189:3,4,6,20;
196:5,8,10,14,15,16, 18;198:3;200:19;
201:1,2;202:16;203:2, 2;204:1,3,9;205:14;
206:21;207:13;
219:10,12,13,22;
220:6,9;222:11,12;
223:2,17,18;224:21; 225:1,18,22;226:6,7; 228:21;229:1,14,14; 230:19;231:16;233:1, 2;236:1,2;246:6;

270:11,15,15,20,22; 315:2;322:18,19,19; 333:17;334:2
percentage (9)
51:17;76:11;95:10;
100:2;111:8;164:20; 169:4,6;188:20
percentages (5)
68:9;73:5;196:19; 207:1;213:8
perception (7)
67:11;72:21;138:2; 195:18;196:17; 206:13;226:13
percolated (1) 234:18
perfect (3) 53:14;106:13;107:3
perform (1) 260:9
performance (1) 316:22
performed (5) 33:18;200:9; 213:19;214:4;220:4
performing (2) 173:4,9
perhaps (29) 12:13;15:15;21:22; 37:5;39:2;53:3;56:9; 80:14;82:12;84:4; 130:13;140:1,16; 152:14;182:1;223:5; 228:5,7;232:7;264:7; 283:10;288:7;290:7; 294:6;295:6;322:10, 17,21;324:4
period (5) 33:17;35:5;180:22; 291:6;317:8
perioperative (1) 4:12
peripheral (47) 7:11;10:9;12:16,22; 13:4,7,18;14:2,4,8,14, 18;16:7,22;27:8;32:5; 34:22;41:20;57:20; 77:14;78:2,3;79:1,8; 83:8,12;109:15,20; 153:17;192:3;222:18; 238:4,7;239:7;243:5; 248:3;255:1;272:13; 281:16;283:5,8; 298:14,16;306:5,8; 307:3;328:14
periphery (2) 183:2,5
permit (1) 23:8
persistent (1) 259:20
person (15) 6:4;50:13;54:21;

93:5;101:12;117:19; 119:12;127:13,13; 145:9;185:14;221:9; 227:15;247:1;315:1
personally (2)
301:14;313:11
person's (1)
98:11
perspective (10)
127:18;133:8;
153:11;216:14,15; 217:5;220:19;236:3; 256:18;329:2
peruse (1) 229:2
Pestronk (3) 107:19;181:2;182:8
Peter (1)
98:1
pharma (5)
140:21;157:13; 158:4;248:12;250:15
pharmaceutical (2) 138:4;324:6
phase (5) 110:8;287:22;
288:1;324:6,7
phenomena (1) 181:4
phenomenal (1) 269:17
phenotype (30) 18:19;26:12;30:9; 60:22;61:5;63:14; 64:3,4;69:12;75:13; 147:13;161:7,11,13; 166:9,11,12;170:4; 218:7;219:9;230:21; 231:21;232:22;233:7; 240:19;242:8;264:19; 313:17;321:8;329:4
phenotyped (2) 161:15,17
phenotype-defining (1) 19:7
phenotypes (2) 74:16;166:5
phenotypic (2) 63:12;240:22
phenotypically (2) 232:19;305:6
phenotyping (3) 67:5;139:8;161:8
philanthropy (1) 9:13
PHN (2) 166:3,7
phones (1) 23:16
phrase (1) 111:18
physical (1) 261:16

```
physician (2)
    144:6;255:19
physicians (2)
    90:5;116:20
physiologic (1)
    220:3
physiologically (1)
        220:10
physiology (3)
        131:12,21;251:4
pick (7)
        40:20;131:22;
        165:5;267:6;272:11;
        291:17;303:14
picked (1)
        303:11
picking (2)
        267:15;280:8
picture (6)
        58:19;60:10;63:17;
        116:12;121:2;202:11
pie (1)
        188:20
piece (2)
```

        55:9;292:13
    Pima (2)
30:20;31:2
pin (6)
195:16;196:14;
210:20;271:18,20;
333:17
pinprick (5)
199:16,18;210:17;
214:4;270:1
pins (3)
210:22;325:12;
328:2
pivotal (1)
186:11
place (1)
167:7
placebo (5)
98:19;113:10,11;
172:13;317:10
placebo-controlled (1)
172:4
plagued (1)
162:1
plan (1)
163:2
planning (1)
144:6
plantar (2)
311:11;331:12
plantars (1)
87:12
plasma (1)
129:4
plasmapheresis (1)
114:9
play (5)
58:17;70:3,6;88:2;
163:9
players (1) 225:9
playing (1) 180:5
plays (2) 84:6;158:17
Please (5) 23:17,21;24:1; 93:17;215:7
pleasure (5) 5:3;56:3;77:12; 187:17;215:13
plenty (1) 55:21
PLS (1) 313:15
plug (1) 37:4
plus (3) 88:18;161:19;282:1
pm (4) 185:21;186:2; 286:16;334:10
PMP22 (2) 159:20;319:9
PNRR (6)
18:7;73:12;162:2,5, 8;272:12
pockmark (1) 19:22
podium (1) 10:7
point (94) 14:11;15:3;16:3; 19:13;24:13;26:3; 30:13;35:2;40:13; 43:21;47:14;53:3,13; 54:17,18;64:18;69:22; 70:9,20;74:6;75:10; 91:20;94:9;95:7,12; 99:2;112:7;113:6; 114:17;116:22; 120:12;121:4;125:9, 10,10;127:3,21,22; 128:14;132:5,10; 133:1;140:7;148:2; 149:6,8;160:4,5,12; 166:1,22;179:10,10; 180:12,16;181:18; 191:21;199:22;211:9; 220:8;221:11;230:17; 231:20;232:13;235:7; 237:14,20;240:10; 241:2,14;249:17; 267:20;274:19; 275:17;278:15;281:4; 285:1,12,13;294:9; 296:2,18;299:12,20; 300:6,14;307:2; 309:16;311:14; 312:17,19;315:19; 318:8;332:21
pointed (5)

56:19;132:7;133:8;
221:1;296:10
points (19)
49:21;112:8,19; 120:5,6,11,20;127:22; 128:13;133:1;141:8; 164:3;166:2;206:7; 224:3;248:1;258:14; 272:16;282:5
poked (1) 240:17
political (1) 5:6
poll (1) 143:3
Polydefkis (5) 146:1;178:18; 287:4,10;298:1
Polydefkis' (1) 135:12
polyfactorial (1) 140:3
polymorphism (2) 17:7;152:12
polymorphisms (5) 17:3;67:8;95:18; 152:7;244:9
polyneuropathies (3) 151:14;188:10,17
polyneuropathy (14) 38:5;78:6;132:15, 17;188:22;192:3; 195:5;225:6;228:2; 232:14;241:8,11; 252:19;301:22
ponder (1) 185:17
pony (1) 233:20
poorly (5) 11:17,18;50:8; 251:10;297:8
population (75) 30:21;38:15;44:14, 20;45:16;49:11;50:6, 10,15;65:3;68:10; 69:10;80:16;81:16; 82:1,15;83:6,18,21; 84:9;86:22;87:1; 123:2,3;127:11; 156:10;157:16; 158:20;159:6,15; 165:4,6;166:18; 168:15;173:15; 174:13;179:1,22; 191:21;199:13; 203:20;208:9;212:1,3; 222:10;225:7;226:6; 228:22;229:9,9,12; 230:20;231:1,18; 236:1,13;242:14,18; 244:19;246:4;248:6; 252:8;266:16,17;

267:5;268:12;276:6; 279:15,18;280:9; 282:9;292:9,10;
308:16;332:14
populations (21)
30:16;73:15;80:20;
82:9,18;88:20;135:18;
160:18;164:5;165:21;
171:12;174:17;
190:18;193:12;197:6;
200:16;201:19;227:8,
9;297:18;325:15
pornography (3)
97:7;116:3;122:2
portion (2)
27:12;51:6
posit (1) 240:3
position (2)
271:22;303:12
positive (12) 71:12;107:21; 119:22;155:10; 189:10,12,22;229:6; 242:21;302:6,9;316:6
possibility (1) 173:1
possible (14) 20:20;67:4;86:18; 122:4;123:2;165:19, 22;212:21;223:16; 260:8,9,10;314:6; 320:20
possibly (3) 121:15;169:19; 253:2
postdoc (1) 192:10
poster (2) 114:13;115:8
post-exercise (1) 135:17
post-herpetic (2) 165:5,13
post-nerve (1) 114:18
post-vaccination (1) 102:20
post-Zika (1) 131:1
potassium (2) 75:9,22
potent (2) 235:6;251:9
potential (19) 17:11;59:15;60:2,2; 67:21;80:1;106:9; 139:15,21;144:15; 162:3;171:12;214:6; 242:3,11;248:4,19; 283:19;312:13
potentially (8) 97:3;185:6;190:21;

191:15;256:19;
266:10;296:20;322:16
potentials (7)
190:5,6;197:14,14;
202:21,22;214:5
Pott's (1)
161:19
power (1)
296:12
powerful (1) 50:17
practical (2) 312:20;324:18
practice (13) 48:18;127:16; 171:1;172:21;177:15; 226:17;238:19; 247:18;301:15;304:2; 324:5,11;331:12
practices (2) 240:1;269:3
practicing (1) 239:16
pragmatic (3) 287:18;310:19; 312:3
pre- (2) 34:12;114:18
pre-biopsy (1) 115:1
preceded (1) 102:1
preceding (1) 101:7
precise (2) 218:2;254:7
preclinical (4) 7:22;8:3,6;157:20
preconceived (1) 134:6
prediabetes (14) 36:14;224:9;231:5, 9;233:18;235:2,9,10, 13;237:11;238:18; 251:10;252:2,11
pre-diabetes (2) 32:3;37:22
prediabetic (2) 35:18;177:17
predict (1) 244:9
predictive (4) 34:7;119:11;212:2, 5
predictives (1) 18:21
predicts (1) 38:1
predisposing (1) 204:17
prednisone (1) 98:18
predominance (1)

| 222:13 | presumed (1) | Probably (79) | productivity (1) | 302:11 |
| :---: | :---: | :---: | :---: | :---: |
| predominant (5) | 109:2 | 32:14;35:22;37:1; | 31:19 | protein (4) |
| 27:10;29:19;47:1; | presumption (1) | 40:21;50:5;67:10; | professional (2) | 75:15;81:13;98:5; |
| 99:6;305:5 | 138:15 | 86:12;87:6,17,21; | 6:14;146:20 | 08:21 |
| predominantly (4) | pre-test (1) | 89:16;93:13;95:9,11, | professor (7) | proteins (1) |
| 57:12;148:6; | 21:10 | 12,16;96:9;97:5; | 4:10,11,11;187:19; | 108:18 |
| 268:13;291:3 | pretty (21) | 100:9;102:21;103:8 | 252:16;287:3,4 | proud (2) |
| prefer (1) | 120:7;131:7;190:6 | 105:1;107:2,8;108:18; | profound (1) | 9:17,22 |
| 320:17 | 203:4;205:2;213:9; | 109:21;112:5,17; | 308:16 | prove (1) |
| preferentially (1) | 214:4;237:21;254:7; | 122:19;127:6;129:3, | prognosis (1) | 28:3 |
| 61:19 | 256:3,4,7,15;258:2,10, | 12;130:11,15;134:11; | 26:13 | proven (2) |
| preferred (1) | 20;299:11;322:17,20; | 147:4;155:20;156:21; | program (1) | 114:16;155:13 |
| 320:19 | 326:21;333:1 | 158:2;165:1;171:9; | 84:4 | provide (3) |
| pregabalin (1) | prevalence (38) | 174:17,19;175:1; | progress | 13:2,11;182:18 |
| 160:12 | 16:18;29:3,11,15 | 176:16;188:9;189:20; | 69:8 | provides (2) |
| prep (1) | 22;30:14,17,18;31:3 | 190:8;198:19;201:9; | progressi | 94:20;114:2 |
| 310:11 | 37:17;38:4,8,14; | 235:5,8;237:15; | 34:5,7;35:11;298:5 | provocative (3) |
| preparation (2) | 40:15;45:17;49:1,10, | 238:12;239:22;241:3, | progressive (6) | 121:20;253:5;263 |
| 13:22;29:12 | 11,21;50:7;71:8; | 8;251:20;252:6,7,10; | 130:13;142:21 | proximal (8) |
| prepared (1) | 92:18;212:1,3;222:10, | 264:20;267:2;268:12; | 174:14,21;175:17; | 104:14;197:7 |
| 311:7 | 19;223:5,14;225:3; | 271:9;272:20;274:11; | 176:2 | 98:8;200:10;201 |
| prerogative | 228:16,22;231:16; | 275:15,17,21;282:4; | proinflammatory (1) | 206:21;307:1,13 |
| 151:18;293:6 | 235:19;236:8,11,21; | 289:1,5;298:10;305:2; | 124:9 | psychiatry (1) |
| prerogatives (1) | 237:11;248:6 | 315:20;318:4;329:19; | prolongation (1) | 4:11 |
| 9:9 | prevalences (2) | 330:13 | 104:8 | psychometric (1) |
| prescribe (2) | 30:1;4 | proband (1) | prominent (2) | 266:4 |
| 185:9,13 | prevalent (1) | 60:9 | 27:11;30:9 | psychophysical (2) |
| presence (3) | 328:17 | probands | prominently (2) | 213:18;214:1 |
| 34:8;98:7;236:19 | prevent (2) | 169:5 | 42:22;257:16 | public (2) |
| present (15) | 325:2,4 | problem (20) | promise (1) | $261: 18 ; 266: 1$ |
| 14:22;23:11;25:5; | prevention (1) | $15: 19 ; 30: 4 ; 49: 6$ | $290: 13$ | public/private (1) |
| 82:1;151:15;188:2,7; | 14:8 | 96:2;100:11;104:5; | prompted (1) | 5:9 |
| 190:13;194:9,10,11 | previous | 108:16;128:2;137:11; | 86:9 | publication (5) |
| 209:6;253:1;262:8; | 43:6;120:5 | 157:14;181:16;211:8, | pronounced (1) | 68:2;203:10; |
| 315:21 | previously (3) | 21;253:4;260:3; | 118:2 | 213:10;218:21;324:22 |
| Presentation (16) | 56:9;69:2;262:22 | 264:19;266:2;291:6; | proof (2) | publications (3) |
| 5:4;10:21;25:2; | price (1) | 296:10;319:12 | 155:4;156 | 10:1;82:4;221:1 |
| 56:15;65:7;77:19; | 24:17 | problematic | proof-of-concept (2) | publicly (4) |
| 93:18;97:6;125:2; | prick (2) | 314:21 | 159:3;165:18 | 265:15;271:14 |
| 128:20;151:10;188:4; | 195:16;196:1 | problems (3) | PROPANE (2) | $273: 14,16$ |
| 194:4;204:21;215:21; | primarily (17) | 61:15;112:12;210:6 | 68:4;69:7 | public-private (4) |
| 252:20 | 34:19;78:6;82:2; | procedure (2) | properly (1) | 5:18;6:1,11,21 |
| presentations (1) | 170:22;191:9;193:4; | 19:21;20:5 | 154:20 | publish (3) |
| 287:12 | 200:8;206:9;257:6; | Procedures (1) | properties (3) | 146:19;228:16; |
| presented (13 | 271:14;300:14; | 12:16 | 58:12;59:4,20 | 324:14 |
| $72: 8 ; 100: 4 ; 101: 22$ | 318:20,20;323:22 | proceed | proponent (2) | published (24) |
| 107:22;114:13;115:8; | 324:5,8;330:19 | 11:5 | 178:19;241:12 | 9:14,18;13:18,21 |
| 152:2;169:21;200:4; | primary (17) | proceeded | proportion (6) | 14:2,7;22:4;41:19; |
| 215:5;219:15;283:2; | 58:9,11;62:10;63:1; | 275:17 | 32:13;147:11; | 2:10;65:18;98:22; |
| 288:15 | 138:7,13,21,22;157:5; | proceedings | 148:19;201:11; | $102: 16 ; 110: 8 ; 111: 3,$ |
| resenting (3) | 219:14;252:12; | 4:9 | 202:15;203:2 | $11 ; 115: 19 ; 123: 21$ |
| 139:16;219:14; | 283:11,15;286:8,9; | process (15) | propose (2) | 68:8;225:15;229:9 |
| 260:2 | 294:6;324:21 | 101:4;104:4;109:7 | 99:12;125:1 | 15,20;254:20;273:17 |
| presidency (1) | primitive (1) | 115:18;117:10,15; | proposing (1) | PubMed (1) |
| 5:1 | 302:12 | 118:3;180:9;216:16; | 132:2 | 191:12 |
| president (1) | principle (3) | 256:17;264:6;265:18; | proposition (1) | pulled (1) |
| 4:17 | 93:6;127:8; | 273:20;276:11;308:7 | 76:7 | 47:12 |
| pressed (1) | print (1) | prodding (1) | prospective (4) | pure (26) |
| 295:10 | 255:11 | 294:10 | 50:19;124:15; | 27:15;42:8,12; |
| pressure (4) | pro- (2) | produce (1) | 187:10;222:16 | 57:10;67:20;86:1,11, |
| 184:9;251:6,11,13 | $124: 6 ; 125:$ | $149: 8$ | prospectively (2) | $13 ; 87: 11,18 ; 99: 8$ |
| presume (1) | probable (4) | production (1) | 168:11;225:17 | $110: 4 ; 144: 17 ; 147: 12$ |
| 309:12 | 223:15,16,19;314:5 | 201:6 | protean (1) | 148:7;153:16;154:17; |
| Min-U-Script® |  | A Matter of Record (301) 890-4188 |  | (30) predominant - pure |

159:4;160:3;163:15; 166:8;206:17;207:11, 19;229:21;258:5
purely (1) 216:19
purposefully (1)
139:12
push (1)
293:6
pushing (1) 119:4
put (21) 10:15;37:4;77:16; 86:6;103:15;112:18; 116:5;121:2;153:18; 159:12,21;166:15; 169:18;171:17; 175:15;177:3;178:21; 241:5;265:11;320:7; 324:20
putting (4)
74:2;176:8;193:4; 269:17
p-values (1) 274:12
pyridoxine (3) 226:18;227:7,21
$\mathbf{Q}$

QSART (3)
195:17;202:15; 274:10
QST (25)
21:10,10,13,14,19; 43:11;72:12,17;139:8; 149:20;150:4;151:8; 154:4;188:13;190:8; 193:14;194:14; 196:17;197:8;198:16; 201:13;204:18; 208:15;209:12;310:11
QSTs (2) 95:2;103:4
qualifiers (1) 331:10
quality (5) 167:2;170:10; 172:9,11;278:4
quality-of-life (1) 277:18
quandary (1) 167:9
quantified (1) 21:21
quantitative (9) 22:2;42:14;44:1,4; 124:8;137:20;194:9; 196:15;289:10
quantitatively (1) 221:20
quarter (6) 30:7;41:11;95:15;

116:7;231:22;333:15
queries (1)
295:22
questionable (1)
134:15
questionnaire (26) 83:1;256:18;257:8; 260:4,21;261:2,13,20; 265:2,2,8,9,10;267:4, 6,11;276:16;286:2; 292:2,4,5;293:10,18; 294:1;326:19;327:1
questionnaires (29)
19:4,5,6,7,11,12,12; 190:3;253:20;254:17; 255:7,19;259:7; 265:15;266:3;269:13; 277:3;283:1,17;285:8; 290:21;291:9;294:3,5, 11;296:21;297:4,7; 326:13
quibble (1) 217:11
quick (4)
76:4;140:22;179:9;
186:9
quickly (7) 56:22;135:16; 188:16;233:16;234:2, 21;327:15
quicksand (3) 178:20;217:16; 230:14
quiet (1) 23:16
quietly (2)
20:16;177:5
quite (32)
10:4;23:1;31:10; 38:4;53:2,17;67:8; 68:1,3;74:10;101:16; 124:11;146:12; 169:16;184:15;206:3; 208:5;212:2;215:8; 226:10;232:3;236:12; 238:8;262:11;271:17; 291:16;296:9;297:10; 306:14,16;312:11; 315:8
quote (2) 177:10;241:4
quote/unquote (2) 81:21;302:6

| $\mathbf{R}$ |
| :---: |
| racial (1) |
| $28: 17$ |
| raise (6) |
| $10: 6 ; 46: 17 ; 167: 1 ;$ |
| $172: 22 ; 274: 19 ; 303: 20$ |
| raised (4) |
| $12: 20 ; 53: 14 ;$ |

$190: 12 ; 287: 16$
raises (1)
$275: 3$
ramped (1)
$8: 4$
ran (1)
$191: 5$
random (2)
$47: 22 ; 113: 15$
randomization (1)
$18: 1$
randomized (2)
$172: 4 ; 173: 5$
range (6)
$141: 20 ; 260: 12 ;$
$267: 16 ; 270: 16 ;$
$291: 10,16$
ranging $(\mathbf{2})$
$261: 2,18$
rapid $(\mathbf{1})$
$37: 8$
Rappaport $(\mathbf{3})$

Rappaport (3) 6:1;12:18;186:12
rare (20) 37:5;39:18;40:9,17; 42:1;81:2,6,10,14,17; 82:7,20;83:9,21,22; 88:9,13,13,14;89:22
Rasch-built (2) 260:5,18
rat (1) 175:7
rate (5)
109:5,8;112:21;
145:22;271:18
rated (1) 116:19
rates (2) 89:19;164:12
rather (13) 76:11;77:3;143:18; 164:9,17;190:4;192:4; 214:2;220:16;252:12; 306:2;307:9;311:10
rating (4) 204:5;260:7,8; 305:17
rationale (3) 79:3;160:17;295:11
Rayaz (1) 140:17
read (9)
39:13,21;90:4; 222:19;241:7;255:12; 261:14;273:9;274:12
reading (1) 145:14
real (6) 35:14;133:2;184:1; 315:13,13;317:15
reality (1) 91:1
realize (5)

63:10;66:18;202:7;
281:22;327:21
really (219)
4:7,20;5:11,14,21; 7:3,14,21;8:4;10:3; 11:4;15:7;25:4,15; 27:18;28:5;29:21; 35:3;36:13;39:16; 40:5;41:6;42:3;43:18; 44:7;46:15,19;47:2; 48:5,8,16,18;49:9,20;
50:8;51:20;52:1,18;
53:16;55:5;60:20;
66:18;67:5;69:18; 70:13,21;72:1,3; 76:12,16;78:4;79:15;
83:20;84:7;86:22;
87:22;88:7,10,22;
89:18;91:7;93:20;
94:6,12;95:6,21;
96:19;98:15;99:21;
101:19;103:18;104:9,
11,21;105:16;108:16;
109:18;112:7,11;
113:3;114:19;115:22;
116:2;118:18;119:3,7;
120:21;121:1,10; 123:4;125:10;126:2;
132:6;133:6;134:9,20;
135:7,9,17;136:5,21,
22;140:6;141:15;
142:6;143:3;148:16,
18;149:4;150:14;
153:19;155:11,15;
157:19;158:19;159:3, 12;162:16,18,21;
163:3,9,18;165:17;
166:22;167:5,14;
169:5;170:17;171:14;
180:6,8,16,21;181:11,
14;182:11,12,15;
183:10,17,18;185:8; 198:2;199:15,18; 217:8;218:7,11,20; 222:1,2;223:20; 224:11;226:4;227:3, 11;229:10,17;231:17; 233:5;237:1;239:1,8; 241:5,6;246:1;250:8; 253:12,21;254:17; 256:6,13;257:5; 258:10,19;259:17,18; 263:16;265:12; 266:12,22;267:19; 271:10;274:5;276:16; 277:6,9,18,19;278:12, 14;279:3,17;281:4,5, 13,19,21;292:1; 296:14;300:16; 302:14;308:13,19; 313:6;314:2,12;315:6; 318:22;320:9;321:19; 323:5,7;328:6;329:10;

330:18;332:5,18
real-time (1)
124:8
reason (12)
44:9;103:15;125:6; 135:8;137:21;149:13; 168:9;211:13;220:20;
247:16;251:18,21
reasonable (8) 20:14;156:12; 172:18;190:7;214:15; 294:6;317:8;328:21
reasons (7)
86:15;87:3;162:10;
233:19;295:13;304:4;
317:16
recapitulate (1) 35:4
received (3)
14:5;38:22;191:13
recent (1) 221:6
recently (4) 8:4;41:19;42:10; 215:14
receptor (4) 107:17;110:7; 171:4,6
recess (3) 92:6;185:21;286:16
recessive (1) 63:8
recognizable (1) 43:3
recognize (13) 23:22;24:9;26:8; 27:15;29:22;37:7; 39:13;49:5;92:19; 122:22;139:19; 140:11;175:2
recognized (2) 37:13;51:8
recommend (12) 196:5,8,11,14,15,16, 19;204:6;206:8; 294:18,20;322:13
recommendations (6) 90:4;91:21;195:8; 206:14;238:15;245:9
reconvene (1) 286:14
record (1) 192:17
recorded (1) 23:19
recover (1) 146:13
recovers (1) 184:9
recovery (3) 136:2;291:7;295:6
recruit (3) 168:19;216:2;

315:20
recruited (2)
168:12;234:11
recruiting (1)
145:7
red (4)
60:11;90:10;
189:14;240:16
reduced (5)
72:11;189:11;
195:19;198:6;334:2
reducing (1)
206:11
reductase (2) 299:9,22
reduction (4) 34:18;65:11; 115:15;176:15
reference (5)
82:9,18;83:18;
94:19;123:12
referenced (2) 228:4,5
references (1) 192:22
referral (11) 44:11,22;45:3; 49:18;50:11;80:15; 229:5,12;231:1;240:1; 269:3
referrals (2) 73:18;233:13
referred (3) 45:7;73:12;177:22
referring (3) 22:22;144:5;225:14
refine (1) 53:4
refined (1) 14:16
refining (1) 190:22
reflect (2) 166:12;267:3
reflects (3) 80:11,14;141:15
reflex (3)
196:16;269:22; 270:11
reflexes (1) 271:22
reformation (1) 312:6
regained (1) 268:5
regard (1) 181:3
regarded (1) 11:9
regarding (3) 70:22;240:6;288:4
regards (1) 185:3
region (2)
234:12;239:16
registration (1) 24:11
registry (10)
18:8;41:18,20;
77:14;78:4;79:6; 85:10,13;232:5; 272:14
regular (1) 161:19
regulation (1) 124:9
reimbursed (1) 173:8
reimbursement (3) 47:18;324:16;325:3
reiterate (1) 186:13
rejected (1) 91:4
relapsing (1) 146:21
related (13)
14:1;46:22;75:18; 123:15;184:13;190:9; 191:6;261:17,18; 268:14;274:7;282:18; 309:10
relation (1) 309:1
relationship (4) 127:12;134:4; 235:1;278:3
relative (3) 33:13;47:21;237:12
relatively (9) 109:12;110:10; 145:17;166:8;169:20; 175:9;317:6,19;330:7
relatives (1) 96:12
relevance (4)
73:14;127:16; 204:2;254:4
relevant (17) 8:9;29:1;84:11; 105:9;191:15;192:13, 14,20,20;252:7,10,10; 253:12;264:8;271:6; 272:22;289:6
relevantly (1) 257:21
reliability (3)
256:1;257:2;262:21
reliable (1) 181:16
relied (2) 97:17;204:1
relief (1) 295:2
rely (5)
45:18;97:21;98:7;

113:1;163:9
remain (2) 32:19;69:16
remains (4) 26:10;50:8;184:15; 238:12
remarks (1) 9:16
remember (4)
152:19;164:2; 186:21;333:14
remind (2) 24:2;152:21
remiss (1) 35:2
remission (2) 116:21;249:16
remitting (1) 146:21
remote (2) 281:14,18
remove (1) 165:19
removing (1) 140:2
renewed (1) 9:7
repair (1) 110:7
repeat (1) 326:8
repeated (1) 20:1
replicating (1) 85:18
repolarization (1) 59:11
report (3) 28:20;89:13;109:4
reported (9) 8:18,21;69:2;73:17; 81:18;85:19;88:18; 223:4;328:8
reporting (2) 42:18;203:3
reports (2) 86:12;104:13
represent (1) 231:17
representation (2) 6:13;197:21
represents (5) 44:13;48:22;49:15; 52:2;151:22
reproducibility (1) 8:6
request (2) 93:4;121:22
require (5) 48:14;210:17; 240:4;243:7;314:10
required (4) 223:21;275:15;

302:18;328:15
requirement (2)
285:5;293:1
requires (1) 66:22
requiring (2) 127:17;275:12
rescreening (1) 250:4
research (12) 7:22;8:3,6;41:20; 57:4;73:10;77:14; 78:4;183:6;272:13; 280:1;313:2
researchers (1) 212:22
research-wise (1) 297:11
residual (1) 38:13
resolved (1) 53:2
resonating (1) 313:7
respond (6) 90:10;136:16; 179:16;292:6,15; 321:6
responders (1) 116:20
responds (1) 291:9
response (37) 10:19;18:22;26:22; 50:22;75:7;98:16; 102:7;112:21;113:1,2; 114:5;126:13;128:15, 17,19;129:6,8;135:4; 152:5;157:6;163:22; 164:12;166:10; 172:13;178:1,22; 197:13;202:13;203:1; 214:1,1;244:10; 282:11;284:12; 294:10;311:3;316:19
responses (1) 202:14
responsible (2) 5:22;10:8
responsive (3) 147:1;152:13,15
rest (2) 199:14;214:20
resting (2) 59:14;60:1
restless (1) 261:9
Restrooms (1) 24:5
result (8) 44:10,15;162:15; 191:13;207:17; 263:14;265:11;267:22
resulted (2)
81:3;199:10
results (22)
8:20;18:9;22:5;
77:15;82:11;84:5; 110:8;131:9;152:4; 154:5;192:18;194:19; 198:15;199:4,10,17; 201:8,12;202:4,14; 207:2;263:17
results' (1) 195:17
reversed (1) 182:5
reverses (1) 181:14
reversible (1) 65:15
review (20) 15:1;45:15;143:21; 151:2,6;187:21;188:2, 8;190:15;191:15; 204:22;210:2;221:6; 223:20;239:1;253:19, 21;273:13;309:18; 323:6
reviewed (1) 290:9
reviewing (1) 53:21
reviews (8) 7:18;8:8;14:6; 191:10,20;193:17; 206:5;215:3
revised (1) 238:19
revisit (1) 230:12
Reye's (1) 17:4
rheumatologists (1) 111:20
rheumatology (1) 6:15
rich (1) 35:3
Richard (1) 234:9
Richmond (1) 216:4
Rick (1) 218:5
right (42) 8:11;25:17;32:22; 41:22;43:14,16,22; 45:13;52:10;54:10; 62:1;71:3,11;72:4,12; 79:18;95:5;96:21; 97:7;101:10;128:4; 132:10;134:13; 170:12;175:8;180:13; 208:17;211:9;250:1; 254:14;256:20;

277:10;287:17;288:4;
300:11;303:3,18;
311:4;320:10;323:8; 327:1;331:3
rigid (1) 23:2
rigor (1) 8:5
rigorously (3)
28:1;42:7;180:10
Riley-Day (1) 309:5
rising (1) 222:11
risk (35) 32:4,20;33:3,7,13, 16;34:4,14,17,19; 36:11;37:21;39:3,10, 14,16,20;65:6;66:15; 69:19;133:2;134:4; 221:4;224:13;228:19; 231:19,22;235:6; 239:15;242:19,20; 244:11;251:9;252:11; 311:11
risk-benefit (1) 142:4
risks (3)
36:17;185:5;231:21
rituximab (1) 185:7
roadmap (1) 15:12
Rob (21)
15:19;24:22;43:5; 56:1,1;57:15;78:1; 80:12;143:20;145:13; 178:21;223:11,11; 225:14;229:19; 230:16;234:22; 235:17;236:7;237:20; 312:8
Robert (1) 5:4
Robinson (1) 25:2
Rob's (4) 216:6;220:20; 237:9;242:6
Rochester (1) 4:13
rodents (1) 35:12
RODS (5)
254:21;256:11; 267:9;279:12;280:2
ROD's (1) 260:4
Roi (3) 286:21;287:1,14
role (12) 44:3;58:17;68:6; 69:19,21;70:3,6;90:7;

| 136:12;158:17;163:9; | S | $\begin{aligned} & 277: 7 ; 307: 10 ; 319: 7 ; \\ & 324: 18 ; 334: 3 \\ & \text { scale }(\mathbf{2 2}) \end{aligned}$ | screening (7) |
| :---: | :---: | :---: | :---: |
|  |  |  | 19.5.131.18 |
| roles |  |  | 283:2,1 |
| 92:12;312:18 | S | 120:13;204:5; | 284:3 |
| room (13) |  | 6:1 | scroll (1) |
| 5.21.24 | sa | 259:14;260:6;261:2, | 30:19 |
| 92:18,20;94:4;134:10, | 7:16;158:9,19,21 | 19;262:4;265:17,19; | se (2) |
| 143:3;187:1 | safety | 268:9;271:13;275:13; | 151:13 |
| 203:7;225:13 | 210:2 | 278:19;279:12,13,14; | search ( |
| $\boldsymbol{r o o t}(1)$ | S | 280:2;281:7;284:22; | 191:2,12,13;203: |
| 61:19 | sa | 305:17 | seats (1) |
| Rotterdam | 33:2,19;46:10;58 | scales (14) | 134:19 |
| 222:17 | 11;60:21;61:4,4 | 4:22;26 | second (15) |
| Roughly | 63:14,20;65:15;68:9, | 262:12,16,22;263:1 | 9:5;33:4;42: |
| 38:17 | 14;69:3,5,7;73:6; | $278: 3,4,4,16,17$ | 65:10;74:9;125 |
| round | 101:4;112:11;124:7 | 281:17;285:17;315: | 151:17;158:11;160:5; |
| 56:2 | 127:14;137:4;141:9 | scalp (1) | 186:17;200:3;280:22; |
| routine | 143:6,7,17;145:10 | 63:19 | 301:12;327: |
| 240:11;241:2 | 165:15;181:5;198: | scans (2) | secondarily (1) |
| rout | 200:14;201: | 48:10,10 | 324:4 |
| 176:20;225 | 203:19;214:7;216:12; | scarily (1) | secondary (2) |
| Roy (37) | 222:16;224:18; | 40:18 | 70:17;294:6 |
| 10:10,12 | 23 | scenario | sectional (1) |
| 32:2;36 | 238:13;239:2;251 | 265:5;2 | 220:16 |
| 52:11;55:15,18;56: | 10;252:10;261:21 | scenarios | sedation (1) |
| 19;76:2;77:21,22; | 263:20;264:2,13,16 | 321:2 | 7:9 |
| 85:11;138:19;148: | $268: 20 ; 273: 4 ; 291: 1$ | schedule | seeing (10) |
| 186:4,7;192:11; | 294:10;299:21; | 92:13 | $30: 21 ; 33: 6 ; 98:$ |
| 215:10;216:5;221:1; | $303: 12,15 ; 304:$ | School (1) | 145:8;268:16;269:2 |
| 245:1;279:9;282:14; | 316:22;320:9;329: | 252:17 | 270:2,10;271:2;279:1 |
| 304:13;306:1;309:20 | 1:13 | schools (1) | eeking (1) |
| 312:10;314:20; | SAMH | 296:8 | 301:9 |
| 315:15;317:2;320:22 | 6:20 | science | seem (11) |
|  | sam | 9:19;180: | 7;199: |
| royalties | $79$ | 275:12;312: | 201:13;203:4;213:11; |
| 9:13 | sampling (1) | scienti | 37:5;238:2;244:9 |
| oy's (10) | 169:13 | 180: | 322:17;325:5,1 |
| 25:10;26:3;36:12; | sarcoid | scientifically ( | seemed (8) |
| 43:21;294:9;312:1 | $110: 5$ | 171: | 58:6;112:10 |
| 314:2,20;323:15; | $1$ | scientists | 114:10;144:1 |
| 333:2 | 178:12;257:20;264:7 | 47:1 | 192:13;213:6;246:13; |
| rudimentary (2) | sarcoid-mediated (2) | SCN9A (8) | 322:7 (11) |
| 322:8, | 110:9;113:17 | 42:1;58:10,14;59:3 | seems (11) |
| rug (1) | sarcoi | 61:11,21;67:22;76 | 3:17,20; |
| 302:11 | 44:19, 22;231 | score (15) | 09:9;110:10; |
| ruin (1) | 319 | 188:13;260:18 | 148:6;226:16;2 |
| 215:4 | sarcoi | 267:10;269:10 | 298:12;299:9 |
| rule (1) | 110: | 270:11,14,17,22; | sees (1) |
| 320:17 | SAS | 278:14;284:17;285:6, | 268:11 |
| rules (1) | 281:10 | 6;293:20;294:17 | segment |
| 23:15 | save (2) | 326 | 310:8 |
| ruminate | $151: 3 ; 2$ | scores (23) | segregate |
| 264:6; | saved (1) | 6:17,189:4; | 74:15 |
| uminat | 245: | 190:3;237:4,7;269:19, | lect (4) |
| 277:2 | Saw (11) | 20;274:3,21;275:19; | 88:8,11;173:1 |
| running 180:20 | 59:18,19;60:9;65: | 277:7;285:3,18,19 | 298:18 |
| 180:20 | $75: 7 ; 110: 15 ; 124: 5,9$ | $286: 1 ; 291: 13 ; 292: 1$ | selected (1) |
| RUSSELL (15) <br> 180:4:181:10,20 | $162: 8 ; 266: 16 ; 320: 2$ | $\begin{aligned} & 14 ; 296: 7,9,15,19 ; \\ & 297: 5 \end{aligned}$ | 72:10 |
| $\begin{aligned} & 180: 4 ; 181: 10,20 \\ & 274: 16 ; 280: 11 ; 281 \end{aligned}$ | saying (18) | 297:5 <br> screen | $\begin{array}{\|c} \hline \text { selection (1) } \\ 261: 10 \end{array}$ |
| 274:16;280:11;28; | $9:$ | screen (2) 249:13;251:20 | $261: 10$ selective (5) |
| 288:6,7;290:3,16; | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | screened | 152:2,6,13;158: |
| 296:5;314:19 | 233:13;250:10;268:2; | 192:9;223:7 | 174:10 |


| self-reported (2) | sequence (3) | 221:12 | 197:4;284:2,3;292:2; | 55:8,18,20;137:14; |
| :---: | :---: | :---: | :---: | :---: |
| 328:1,3 | 231:10;244:7,9 | SFN (10) | 320:8 | 145:16;148:3;152:16, |
| semi (1) | sequencing (12) | 65:1;191:22;196: | $\boldsymbol{\operatorname { s i g n }}$ (7) | 21;312:10;326:4,9,22; |
| 194:9 | 79:6;87:9;91:6; | 10;202:17;204:8; | 14:1;24:3;116:1 | 331:1 |
| semi-quantitative (1) | 161:16;162:9,22 | 205:4,7;207:6;213:7 | 194:15;258:6;263:15; | Singleton-Smith (1) |
| 204:21 | 167:11,15,18,20 | all | 10 | 319:20 |
| send (1) | 168:6;169:12 | 147:9;171 | significance (1) | SIQ (1) |
| 45:10 | sera (1) | share (2) | 232:17 | 254:21 |
| sensation (6) | 102: | 243:12;315: | significant (9) | sister (1) |
| 156:19;157 | series (12) | shared (1) | 32:20;39:7;51:6 | 63:15 |
| 158:17;261:8;271:20, | 13:17;25:15;93; | 13:20 | 0:2;115:15;227:4 | sites (2) |
| 21 | 94:21;101:18;103:2 | Sharon (1) | 228:19;237:15;267:20 | 249:8;325:13 |
| sense (16) | 108:5;113:15,16,21 | 6:4 | significantly (2) | sitting (5) |
| 37:22;70:1 | 118:8;130:22 | sheets (1) | 116:18;135:7 | 20:15;24:19;150:6 |
| 79:16;119:1 | serologic | 261:8 | Ins (16) | 2;177:4 |
| 14;209:18;213 | 244:19 | shelve (1) | 23:3;46:7;55 | situation (1) |
| 232:8;233:7;235:15 | serological | 158:10 | 131:11;147:16,22 | 291:4 |
| 238:22;243:9;249:14; | 239:21 | shepherding | 148:20;151:8;268: | situations (1) |
| 290:7 | serum (1) | 5:22 | 275:14;280:16,19; | 314:6 |
| sensible (2) | 234:16 | shifts (1) | 281:4;310:6;314:8 | $\boldsymbol{\operatorname { s i x }}$ (6) |
| 246:17;247 | serve (3) | 142:4 | 332:20 | 10:11;106:1 |
| sensitive (5) | 35:14;115:16;186:4 | Shire (1) | silico (2) | 199:11;259:12;330:2 |
| 46:21;47:8;12 | service (1) | 94:16 | 67:1,2 | 7 |
| 126:17;296:9 | 32:4 | short (4) | silly (1) | sizable (1) |
| sensitivity (8) | session (4) | 72:7;135:16;167: | 299:4 | 230:20 |
| 22:7;98:8;109 | 52:16;99:2;185:16 | 185:9 | similar (12) | size (1) |
| 167:13;242:2;289:3, | 186:5 | shortcom | 37:21;75:6;82:10 | 229:22 |
| 13;310:16 | set (23) | 8:19 | 10,14;111:15;153:10; | sizeable (1) |
| sensory (50) | 6:10;1 | shorter | 162:9;231:6;264:18, | 147:11 |
| $12: 5 ; 19: 11 ; 21$ | 35:3;77:21;78:1 | 147:8 | 18;279:1 | Sjogren (1) |
| 22:2;27:19,21;32:18; | 82:14;83:20;93: | shoulder | similarly (2) | 127:1 |
| 40:8;42:8,14;44:1,4; | 151:17;197:2;238:19; | 14:17 | 87:20;229:11 | Sjogren's (12) |
| 47:1;52:22;107:13; | 246:12;254:4;289:2,5; | show (27) | Simon (8) | 98:12,13,14;109:13 |
| $\begin{aligned} & 137: 20 ; 176: 4 ; 195: 12, \\ & 13: 196: 6: 206: 10 \end{aligned}$ | $\begin{aligned} & 294: 2 ; 298: 22 ; 305: 7 \\ & 308: 20: 312: 20: 322: 8 \end{aligned}$ | $\begin{aligned} & 35: 8 ; 61: 9 ; 62: 6 \\ & 83 \cdot 20 \cdot 01 \cdot 16 \cdot 08 \end{aligned}$ | $\begin{aligned} & \text { 14:22;187:18,18; } \\ & 188: 4: 214: 19: 215: 12 \end{aligned}$ | $\begin{aligned} & 14 ; 110: 3 ; 119: 12 \\ & 120: 2 ; 175: 3,4 ; 178 \end{aligned}$ |
| 218:13;219:11,18; | sets (5) | $99: 21 ; 119: 17 ; 141: 2$ | $254: 3 ; 322: 5$ | $231: 14$ |
| 220:5;227:6,15; | 48:8;104:6;105: | 143:4;181:11,12; | Simon's (3) | skeptical (1) |
| 235:12;239:20; | 176:20;187:4 | 182:2,3;190:21; | 150:6,22;293:17 | 321:7 |
| 252:19;255:17;256:9; | setting (12) | 209:17;216:9;220:21; | simple (12) | skills (3) |
| 261:5;264:11,17; | 10:22;31:9;38:16 | 222:18;223:9;225:2, | $21: 21,22 ; 45: 7 ; 89: 9$ | 275:5;326:22;327 |
| 265:8;278:8;292:3,12; | 48:17;123:14;187:11; | 11;226:14;229:16; | $145: 16 ; 166: 19 ; 167: 3$ | skin (91) |
| 307:13,18;308:14,19; | 239:10;249:12;289:7, | 233:20;240:9;333:12 | 262:11,17;271:17; | 19:18;20:1,7,14,18 |
| 309:5;312:16;322:16; | 18;290:7;294:8 | showed (14) | 276:18;319:22 | 20,21;21:3;43:15; |
| 328:2,13;329:12; | seven (4) | 52:21;60:10;71:10; | Simplicity (1) | 48:15;55:2;58:22; |
| 330:19 | 8:22;201 | 76:5;85:16,21;102:22; | 276:19 | 73:4;78:15;79:10,11, |
| sensory-only (1) | 221:1 | 103:9;139:20;172:13; | simplistic | 12;80:10;86:3;90:18; |
| 330:19 | Seventy-one | 223:11;229:19; | 317:3 | 94:20;95:1;102:18; |
| sentence (1) | $196 \cdot 8$ | 230:16;236:7 | simply (6) | 103:5;105:10,11,12 |
| 324:20 | several (8) | showing (3) | 64:11,19;68:14 | 106:10;114:19; |
| sentiment (1) | 14:17;56:5;87:19 | 60:8;223:14;237:10 | 69:22;266:4;327:1 | 118:13,17;122:7,9,11; |
| 312:11 | 147:1;180:11;209:15; | shown (6) | simultaneously (1) | 123:9,22;124:7,12 |
| separate (9) | 241:13;279:1 | 33:1;198 | 9:10 | 125:20,20.126:8. |
| 28:5;85:6;126:22; | severe (14) | 201:4,17;302: | single (11) | 132:1,2;174:19;176:4, |
| 164:10,17;206:6; | 57:13;60:13;61:14; | shows (6) | 82:7;91:3;167:1 | 11;181:7,11,21; |
| 254:21;302:21,22 | 64:8;126:19;131:1; | 44:10;101:2 | 19;169:3;170:6; | 182:21;183:10;184:2, |
| separated (1) | 133:10;178:15;262:8; | 148:5;188:20;219:17; | 183:15;226:1;263:19; | 5,12;185:2;190:7; |
| 195:12 | 264:15,16;267:19; | 222:7 | 318:13;325:13 | 194:14;195:19; |
| separately (2) | 309:9;313:20 | siblings (3) | Singleton (36) | 196:11;197:6,13,13; |
| 68:16;118:6 | severity (10) | 168:14,21;169 | 15:19;24:22;25:2,3, | 198:3,5;200:8,10,18, |
| separating (6) | 31:20,22;35:11 | sick (3) | 21;41:10;43:11,16,19; | 19,20;202:13,22; |
| 199:18;203:4; | 204:4;205:7;235:19; | 117:12;146:12,17 | $44: 1,9 ; 45: 8,13 ; 46: 9$ | 204:8,10;205:18; |
| 213:7,19;214:10; $303: 17$ | 284:15,19,20;326:2 | side (8) ${ }_{\text {1 }}$ | $17 ; 47: 5 ; 48: 3,21 ; 52: 9$ | $206: 10,19,22 ; 210: 8$ |
| 303:17 | $\operatorname{sex}(1)$ | 15:8;158:6;195:6; | $53: 12,21 ; 54: 6,10$ | 212:10,11,18;213:6; |

228:10;230:2,5;278:9, 13;280:18;310:10; 322:16;332:13
skin-burning (1) 261:17
skip (8)
93:15;190:13;
232:5;236:5,6,14; 237:19;238:5
SLE (1)
177:13
sleep (2)
304:3,5
slide (21) 43:6;75:7;84:12; 85:21;86:9;103:16; 139:19;151:9;172:13; 188:7,16;190:14; 217:10;228:12;235:8, 17;236:6;241:6; 266:17;269:16;320:6
slides (14)
85:17;86:6,8; 124:19;188:7;216:9; 217:3,3;233:21; 234:22;235:16;237:9, 19;247:19
slight (1)
222:13
slightly (5) 82:17;106:12; 252:22,22;304:15
slipped (1) 314:20
slow (3) 59:21;147:15,15
slower (2) 41:14;130:12
slowly (1) 147:22
Small (431)
4:8;11:8,9,15,17,22; 12:4,4;15:3,6;16:2,6, 9,16;17:5,7,9,11,14, 18,20;18:18;20:19; 21:15;22:5,10,18; 25:6;26:1,3,5,9,17; 27:10,11,14,15;29:2,8, 19;30:8;32:5,8;34:22; 35:5,8,21;36:17;37:2, 11;38:1,6;39:3;40:6; 41:5,11;42:11,17; 43:11;44:2,14,20; 45:9,12,17;46:2;47:1, 8;48:10;49:1,16,21; 50:7,20;51:14,19; 52:2,7,21;53:11,16; 54:3,19;55:1,5;56:10, 18;57:6,7,11,12,16,21; 58:18,19;59:1;60:14, 15,22;62:4,8,22; 67:15,20;68:2,6,13; 69:5;70:3;71:9;80:8;

83:10;86:1,4,11,14; 87:11,18;93:12,21; 94:2,21;95:11;99:3,5, 7,8,13,18;100:2,6; 101:17,18;102:9,21; 103:4,14;104:19,22; 106:16,18,20;108:6,8; 109:2;110:3,4,9,11, 19;111:6;112:3,5; 113:13,17,19,22; 114:7,11,16;115:9,17, 21;117:2;119:20; 121:19;122:2;123:3, 13,22;124:3,17,19; 125:6;126:1,8,10; 128:13,20;129:11; 132:8,9,15;133:2,3,7; 135:21;136:9;137:11, 16;139:12;141:20; 143:4,13,15;147:8,12; 148:7,18,22;149:12; 150:18;151:12;152:9; 153:13,15;154:13,18, 22;155:6;157:3,15; 159:4,11,19;160:3; 161:2,19;163:15,17; 164:13,14;165:2; 166:3;171:21;172:5, 10;173:17;174:2,8; 175:5,13;176:3,17; 177:1,6,10,18;178:2,3, 19;179:12;185:19; 187:22;188:18,21; 190:16,20;191:1,4,6, 20;193:6,11,19;194:1, 1,12;195:9,15,21; 196:12,22;197:3,22; 199:9,16,19;200:16, 22;201:18;202:15; 203:2,5,12,16,21; 204:7,10,18;205:18; 206:8,16,17;207:12; 208:1,5,12;209:4; 210:5;213:3,11,20; 214:8,11;216:19,21; 217:7;218:13;219:15; 220:11,13;221:14; 228:6,10,20;229:21; 230:18;232:17;233:6; 234:7;235:11;241:18, 20;244:16;247:1; 248:3;250:15;251:16; 253:7;254:18,20; 255:1,4,11;256:11,12; 257:12;258:4,16,17; 260:4,22;261:13; 263:10,12,19,20,21, 22;264:8,11,16;265:8, 9;267:9,15,17;268:13, 19;269:21;270:12,18, 19;271:2,9;272:21; 273:1;274:6;276:5; 279:15;283:4,8,22;

286:3;289:7,22;291:3, 21;292:1,3,4;297:1;
298:7;300:19;301:1,2, 11,12,16,21,22;302:7, 11,17,20;303:14; 304:21;305:1,3,4,5; 307:17,19;308:17,21; 309:7;310:4,21;
311:19,22;312:14,18; 313:8;314:14,17; 315:5;318:12;319:5; 320:8,13;321:8,10,19; 322:1,12;326:3;327:8, 9,16;328:13;329:16; 330:11,18;331:14; 332:2,8,16;333:13,17, 22
smaller (11)
30:17;44:18;86:12;
88:21;94:11;122:21, 21;196:19;200:22; 213:8;291:15
smarter (1) 118:12
smiling (3)
181:8;182:6,9
Smith (27)
16:4;46:9;48:4;
51:11;132:22;133:17, 19;164:1;211:20; 215:14,21,22;216:4; 218:18;245:6,15; 246:15;247:10;249:6; 250:21;278:1;287:13; 295:17;296:4;313:5; 321:6;331:21
SNRI (1)
136:8
societies (1)
6:14
Sod (1)
231:16
sodium (53)
17:6;40:10;41:1;
49:11;51:4;58:6,6;
65:12,16;68:6;69:21; 70:2,15;71:13,16;
72:1,3,3,13;75:1;76:6, 10,13,15;81:2;82:11; 87:15;99:13,15;105:2, 7;129:18;151:16; 152:2,6,13;153:2,6; 155:8;160:6;161:1,18; 164:5;171:2,8;230:12; 231:10;233:4;241:1; 242:2,7;244:7;252:9
solution (1) 250:5
solutions (1)
215:19
somatic (5)
27:21;302:1,6;
303:22;312:16

| somebody (14) | speaks (1) |
| :---: | :---: |
| $11: 13 ; 12: 9 ; 90: 9,14 ;$ | $87: 6$ |
| $97: 12 ; 148: 12 ; 153: 11 ;$ | special (1) |
| $159: 17 ; 185: 6 ; 258: 4 ;$ | $203: 7$ |
| $260: 1 ; 268: 3 ; 330: 11$, | specialists (1) |
| 12 | $318: 9$ |
| somebody's (1) | specific (31) | 184:22

somehow (1) 191:6
someone (7)
89:6;129:5;217:17; 227:1,19;300:7;325:3
Sometime (2) 4:15;188:9
sometimes (3) 176:19;193:5; 205:16
somewhat (6) 153:9;210:4; 212:19;244:10; 254:13;278:12
somewhere (3) 20:6;134:14;172:16
soon (1) 273:18
sorry (3) 41:7;49:17;138:14
sort (33) 8:1;46:10;54:15; 73:9;94:1,9;99:20; 100:7;117:16;120:4; 122:22;133:14; 137:18;217:14;222:6; 244:15;250:8;252:11; 253:15;257:13;258:2; 262:17;266:12;267:1; 268:17;270:6;294:1; 298:7;308:7;319:20; 320:10;327:12;329:4
sorts (1)
48:15
sound (2) 61:14;170:16
sounded (1) 151:21
sounds (1) 162:13
South (2) 95:4,7
spaces (1) 307:15
speak (5) 23:17;126:6;146:7; 151:17;153:3
speaker (4) 24:21;92:14; 215:14;252:15
speakers (5) 24:16;92:9;286:21; 287:9;297:22
speaking (2) 23:18;281:12

```
    ks(1)
    87:6
    special (1)
    pecialists (1)
```

    specific (31)
        35:16;75:8;79:2;
        116:4;120:22;122:8;
        165:21;166:2;189:1;
        206:2;213:16;215:6;
        216:21;255:4;257:17,
        19,20;265:7;269:20;
        276:13;277:18;
        283:20;286:4;288:3;
        292:4,5;295:20;
        299:16;319:4;322:20;
        325:14
    specifically (14)
16:8;56:11;78:10;
110:8;153:16;160:20;
167:15;237:6;251:1;
254:17;255:5;319:1,2,
4
specificity (9)
22:8;98:9;126:8;
128:1;210:1;289:3,14;
316:4;325:11
spectacular (1)
73:8
spectacularly (1)
39:14
spectrum (12)
53:11;62:20,22;
115:6;140:12;151:13;
172:7,15;178:6,9,10;
220:15
speechless (1)
91:10
spend (2)
5:12;166:16
spent (3)
170:19;271:11;
291:1
SPEP (1)
243:17
spinal (3)
28:11;108:21;
109:16
spinothalamic (2)
27:19;28:2
splice-site (1)
63:7
split (2)
100:8;122:21
splitting (1)
165:9
spoke (1)
283:13
spoken (1)
77:16
sponsored (1)
152:1

| spontaneous (3) | starting (6) | 167:20;168:7;214:15; | struggling (3) | 21;273:15;274:2; |
| :---: | :---: | :---: | :---: | :---: |
| 9:16;60:5;310:18 | 95:12;130: | 3:21;236:12; | 73:9;298:2;31 | $75 \cdot 11 \cdot 277 \cdot 10 \cdot 322$ |
| sp | 14;305:22 | 37:16;253:8;282:8 | stud | studying (5) |
| 175:16;176:9;177:4 | 327:16;328:12 | 321:6 | 11:18;68:4;254:18; | 187:12;257:10 |
| spread (2) | starts (4) | stop (6) | 255:5;262:22 | 264:7;282:9;305:18 |
| 120:16;175:22 | 159:15;247:6,10 | 55:16;84:1 | studies (138) | stuff (1) |
| spurs (1) | 292:21 | 180:21;181:8;245:6 | 8:8,17;21:12,13 | 263:6 |
| 311:12 | State (6) | 317:8 | 6,20;23:5, | stumble (1) |
| square (1) | 23:17;24:1;25:17 | stopped (1) | 32:15;33:8;34:15; | 25:12 |
| 96:2 | 45:11;111:12;193: | 84:3 | 35:18;37:18;41:10,13; | subacute (1) |
| S's (1) | statement (2) | stopping (1) | 44:15;48:14;50:6,19; | 329:16 |
| 218:16 | 91:2;247:19 | 317:21 | 51:2;78:15,17;79:5, | subconsciou |
| SSA (2) | States (15) | straightforward (3) | 10,12;80:10;86:2; | 93:14 |
| 119:1,2 | 12:22;29:21;30:1 | 202:5;207:7;260:17 | 101:1,11;103:14 | subdivide (1) |
| SSB (2) | 31:15;37:1;39:8,16, | strategies (3) | 104:18;105:15; | 265:11 |
| 119:1;120:1 | 18;49:2;87:20;224:8; | 140:8;237:22 | 107:11;133:12;147:8; | subdividing (1) |
| St (1) | 250:18;257:22; | 329:20 | 180:15;183:15; | 170:3 |
| 187:2 | 276:15;279 | stratif | 187:10,22;188:21,21; | subgroup (6) |
| stable (4) | stating (2) | 17:22;316:1 | 189:2,21;190:1,17; | 70:17;74:21;83:19 |
| 144:10; | 66:21;304: | strawman | 191:4,10,18;192:6,7,7, | 170:1;310:8;322: |
| 174:16;3 | statis | 249:12 | 15,16;193:5,9,17 | subgroups (2) |
| stage (3) | 237:15 | st | 196:9;197:2,2,2,18 | 201:10;322:20 |
| 11:5;55:3 | status |  | 22;198:4,7,11,13,18 | subject (2) |
| stages (1) | 83:2 | strayed ( | 199:1,4,7,11,15,21; | 25:9;248:7 |
| 19:4 | stay (5 | 182:15 | 200:9;201:1,3,11,17 | subjective (1) |
| stakehol | 143:6,7,17;146: | strength | 202:1,3,15;203:2,19; | 113:5 |
| 6:12 | 158:13 | 129:5;269: | 204:14,18;205:6,9; | subjectively (1) |
| stand (4) | stayed (1) | 271:8;273:5;33 | 206:1,15,18,21;207:5, | 112:15 |
| 43:7;172:15, | 144:10 | strengths (2) | 21;208:5,16;209:2,4, | subjects (7) |
| 261:8 | steal (1) | 262:12;263 | 11,15;210:3,17;211:5, | 81:1;85:17;111:2, |
| standard | 46:3 | st | 7,22;213:3,9, | 193:10;262:13;266:11 |
| 106:2,7;211 | ste | 66:6 | 214:8;220:4,5;222:8; | subliminal (1) |
| 212:7,10;251:20; | 41:1 | strict (2) | 234:20;244:4;255:7; | 93:14 |
| 255:21;257:2;260:1 | STEINER | 58:22;17 | 258:11,15;272:4; | submit (1) |
| 19;263:11;273:12; | 153:9;155:22 | strikin | 275:3;277:12;278:8 | 188:9 |
| 284:22 | 156:4,16 | 197:16;221 | 279:5;287:22;288:22; | subpopulation (3) |
| standardized | STENO (1) | 222:20 | 289:5,11,14,18,19; | 78:22;80:7;83:11 |
| 78:13 | 34:15 | strikingl | 294:15;302:2,3;303:8, | Subsequent (2) |
| standards | step (6) | 237:4 | 9;305:16;321:15; | 41:13;172:16 |
| 289:20 | 49:17;56:6;155:17 | stringent | 322:7;326:1;333:12 | subsequently (2) |
| standpoint | 172:16;180:15;306:17 | 128:16 | study (86) | 126:12;242:9 |
| 147:20 | stepped (1) | stroke (3) | 18:7,8;31:14;33:18 | subset (2) |
| stands (3) | 36 | 251:6,11 | 36:7,8;42:19;44:17 | 159:4;179:5 |
| 5:15;14:10;186:20 | steps (2) | strong (9) | 49:11;68:4;69:7; | subsets (2) |
| Star (1) | 165:20; | 70:22;90:9; | 77:15;78:5,21;79:1 | 115:17;322: |
| 180:6 | steroid (1) | 142:20;158:16; | 81:5;84:14;85:9,10, | subsidiaries (1) |
| start (33) | 147:1 | 243:15;279:4;281:10; | 14,14,15;86:13;87:3; | 12:19 |
| 7:4;8:2;27:3;48 | steroids (8) | 290:5 | 102:4;105:19;109:12; | substantially (1) |
| 100:18;101:15; | 102:3;103:5 | strongly (3) | 132:4;138:7;141:1; | 129:2 |
| 114:20;116:12;117:7; | 112:15;114:9;129: | 90:2;107:4;138:12 | 144:7,8;145:7,10,11 | substitute (1) |
| 118:11;119:18;121:1, | 142:1;179:16;180:1 | struck (1) | 148:16,21;152:1,4; | 20:14 |
| 13;129:20;132:6; | Steve (3) | 277:15 | 165:21;168:15;193:7; | substitution (1) |
| 147:12;153:10;156:5; | 58:13;63:22;65:8 | structural (3) | 194:2,22;195:21; | 75:19 |
| 157:17;181:20,21; | Stewart (1) | 12:3;332:9,16 | 197:4,19;199:5;204:3, | substrate (1) |
| 182:4;188:6;195:7; | 209:3 | structurally (1) | 19;210:12;214:14; | 139:14 |
| 221:2;233:12;246:1; | stick (1) | 301:1 | 215:4;220:16;222:16, | subtle (2) |
| 253:1;254:1,5;287:6; | 163:17 | structure (6) | 17;223:22;228:9; | 236:18;240:14 |
| 306:6;323:7 | sticky (1) | 121:19;140:15,2 | 229:15,18,22;230: | subtype (1) |
| started (13) | 12:14 | 274:7;275:6;313:16 | 232:6,10;234:8,9 | 276:12 |
| 25:15;57:21;58:5; | still (21) | structured (3) | 235:11,18,18;237:10, | subunit (1) |
| 63:16;120:15;145:6,7; | 36:22;44:13;55:22 | 21:15,16;283: | 10;241:21;243:19 | 61:18 |
| 175:21;186:4,9; | 56:1,10;64:4;160:1; | struggle (1) | 244:15;250:5;251:16; | subunits (1) |
| 249:10,15;320:6 | 161:7,17;164:8,16,18; | 268:18 | 258:14;272:5,16,19, | 61:18 |

```
succeed (1)
    186:8
succeeded (1)
    6:12
successful (2)
    249:15;252:3
```

successor (1)
6:4
succinctly (1)
296:3
suddenly (1)
11:11
sudomotor (2)
46:20;196:16
suffer (1)
145:3
suffering (1)
280:12
sufficient (4)
19:13;44:2;176:8;
241:13
suggest (6)
32:6;97:14;126:21;
181:19;223:5;256:21
suggested (3)
12:18;243:16;
255:14
suggesting (1)
242:5
suggestion (1)
246:17
suggestions (2)
70:22;241:1
suggestive (1)
232:22
suggests (6)
28:21;34:21;
139:22;157:21;
240:20;242:3
suitable (1)
284:4
summarize (2)
200:13;205:1
summarizing (2)
211:1;274:15
summary (1)
83:20
super (1)
40:9
supplement (1)
87:18
supplements (1)
226:19
support (2)
9:12;94:15
supporting (1)
332:20
supportive (1)
152:8
suppose (2)
152:10;172:20
supposed (3)
97:11;173:10;189:7
surals (1) 87:12
sure (29)
6:19;7:2;10:13;
14:6;18:10,11;23:11; 41:15;43:19;52:15; 55:4;59:6;74:3;80:17; 97:5;105:16;171:16; 179:7;184:16;216:5; 233:14;234:10; 261:14;279:18; 287:15;297:20;311:7; 325:8;329:7
surgery (2)
236:15,18
surprised (3)
170:18;275:22; 316:20
surprising (3)
4:21;31:6;229:3
surprisingly (3) 38:6;39:1;271:1
surrounding (1) 48:6
survey (3)
254:18;256:6;259:8
surveys (1) 259:5
survivors (2) 38:13,16
susceptibility (3) 74:20;169:21,22
susceptible (1) 229:5
suspect (6)
129:1;139:6; 175:11;220:12;225:4; 268:20
suspected (8) 123:5;155:14; 210:5;232:11;238:11; 239:12,13;240:12
suspecting (1) 232:19
suspicion (2) 121:10;123:5
suspicious (1) 90:2
sustained (1) 116:21
sweating (3) 259:19;261:6,16
swellings (1) 176:19
symmetric (8)
78:5;151:14; 188:10,17,22;195:5; 225:5;228:1
sympathetic (3) 61:20;202:13; 319:16
symptom (23) 110:13;150:19;

151:8;194:14;219:14; 256:13;258:6;259:11;
260:21;263:15;278:3;
292:14;296:9;297:7, 18;316:13;325:7,14; 327:12,14,14,14; 328:14
symptomatic (23)
128:22;139:14;
140:9;141:14;142:20;
153:13;157:7,10;
175:17;283:9;293:21;
295:1;298:13;299:2,6;
308:1;316:8;317:12,
14;325:22;327:9,20; 331:9
symptomatically (3) 113:18;147:19,21
Symptom-Based (1) 13:20
symptoms (97)
55:11,12;57:14;
58:1;60:13;61:2;64:8, 9,12,15,16,18;80:19; 96:8,15;100:6,15,22;
107:22;108:1;110:22; 118:8;128:21;131:10, 19;132:4;134:13; 140:13;143:1;159:22; 163:13,14;174:15; 176:22;188:13;189:5, 18,19;190:5;195:12, 13,18;196:6,18;204:2; 205:5,13,20;206:10; 219:4;236:20;238:3; 254:19;256:7;258:7,8, 9;259:9,18;275:11,14; 277:14;280:16;281:1, 4;292:7,14;294:16; 295:4;296:7,15,19; 301:13;302:18;304:1; 306:22;308:21;309:1, 12;310:2,5;314:8; 322:15,16;323:6; 325:11,17;327:3; 328:1,2,9,15,21; 330:6;332:3,19; 333:12
symptom-wise (1) 297:15
syndrome (36)
32:4,8,14,21;33:1,6, 12,15;34:3,6,17;35:6, 19;36:10;58:15;63:2; 75:22;87:13;107:15; 108:3;109:15;110:3; 112:12;125:13;131:2; 217:20;224:9;231:5; 233:17;235:2;236:8, 12;237:12;242:16,19; 309:6
syndromes (2)
101:15;112:4

| synonymous (1) | 5:14;15:21;16:5; |
| :---: | :---: |
| 101:4 | 25:1;27:17;28:15; |
| synthesis (2) | 42:6;43:20;55:16; |
| 109:5,8 | 56:2;93:9;99:20; |
| synthetic (1) | 107:10;124:19;157:7; |
| 197:13 | 170:19;172:5;176:14; |
| system (4) | 186:10;215:18; |
| 112:13;126:18; | 216:20;246:5;252:17; |
| 127:1;281:18 | 254:16;255:16; |
| systematic (12) | 285:21;299:1;302:19; |
| 7:18;15:1;151:2,6; | 303:5;307:20;316:12, |
| 187:21;188:2,8; | 13,15;321:9;329:11, |
| 190:15;191:2;204:22; | 11;332:15 |
| 215:3;309:17 | talks (4) |
| systematically (3) | 94:10;134:22; |
| 148:16;193:2; | 257:14;293:17 |
| 288:10 | tandem (1) |
| systemic (5) | 76:19 |
| 27:7;116:8;128:5; | $\boldsymbol{\operatorname { t a p }}$ (1) |
| 144:22;176:22 | 108:21 |
| systems (1) | target (12) |
| 281:21 | 120:13;134:1 |
| T | 171:2,4,4,9;180:14 |
| table (5) | target-based (1) |
| 49:8;119:10;120:5; | 11:21 |
| 126:5;127:20 | target-directed (1) |
| tailor (1) | 140:8 |
| 240:5 | targeted (3) |
| tailors (1) | 70:7;74:10;279:14 |
| 298:7 | targeting (5) |
| take-home (3) | 138:18;153:21,22; |
| 43:1;49:20;206:18 | 164:7;251:1 |
| talk (73) | targets (6) |
| 15:11;17:3;23:10; | 37:14;76:10;84:7; |
| 25:9;26:7;27:6,20; | 110:7;156:9;165:2 |
| 29:14;32:2,3;36:16; | tasks (1) |
| 40:5,12;41:18;46:18; | 260:12 |
| 48:9;52:4,12,12;53:4, | taught (1) |
| 15,18;56:17,22;71:7; | 60:8 |
| 77:15;85:2;91:7; | taxonomic (1) |
| 93:16;97:1,18;98:11; | 14:18 |
| 101:16,18;121:18; | taxonomy (8) |
| 132:21;141:11,16; | 14:14;153:18; |
| 143:14;150:17; | 288:19;295:18,20; |
| 151:21;179:11,11; | 313:14;322:3;332:17 |
| 216:11;218:9;220:18; | tea (2) |
| 222:5;225:11;232:6; | 260:13;267:14 |
| 233:21;234:8;239:14; | team (1) |
| 240:17;245:4,21; | 24:7 |
| 247:15;253:13;254:9, | tease (1) |
| 22;261:5;277:6; | 221:5 |
| 278:1;280:22;285:20; | technical (4) |
| 293:16,17;294:5; | 162:4,8,10;163:8 |
| 302:1,2;306:18; | techniques (2) |
| 313:15,15;323:14 | 213:1;310:17 |
| talked (12) | teens (1) |
| 39:11;112:8;119:5; | 246:21 |
| 140:21;218:2;227:11; | teeth (2) |
| 229:18;231:7;232:4; | 260:12;267:14 |
| 235:17;303:21;308:10 | telling (5) |
| talking (37) | 100:9,16;117:21; |


| 118:2;136:22 | 165:7;210:15;22 | $146: 22 ; 180$ | $198: 13,19 ; 202: 21 ;$ | $93: 10,17,18 ; 12$ |
| :---: | :---: | :---: | :---: | :---: |
| tells (2) | 17,18;226:22;228:17; | ther | 219:4;286:21;287:7; | 153:18;172:13; |
| 117: | 243:20;245:13; | 18:16;94:3;98 | 289:12,21;306:22; | 181:22;218:2 |
| Temperature (3) | 50:17.258:78 | 3:1,12;114:5, | 328:7,20 | 40:17;244:14;303:2; |
| 43:9;58:21;259:20 | 63:14;265:4;270 |  | three-fourth | 320:3 |
| tempo (1) | 276:16;282:7 | 172:3;179:12,18 | 207:2 | Todd's (1) |
| 146: | test/re | ;241:2 | thre | 231:20 |
| tempora | 256:1;262:2 | 244:16 | 176:21 | toe (6) |
| 103:18;104 | test | ther | threshold | 271:19,22;313:21 |
| tempos (1) | :20;16 | 30:14;104 | :9,10; | 333:20,21;334:2 |
| 147:4 | 174:13;208:4;2 | Thermal (9) | 59:15;60:1;185 | toes (5) |
| tend (4) | sting | 3:10,15; | 189:7;190:9;209:13 | 117:20;125:1 |
| 80:19; | 22:2,3,4;34:2 | 102:6;195:18;196 | 22;210:8;219:21; | 219:22;267:18;270 |
| 132:14; | 42:14;43:9;44:4 | 206:13;230:2,7 | 237:2;285:7;293: | together (11) |
| tent (1) | 19;58:21;5 | thigh (1) | 94:13,15;295: | 56:7;74:2;100:7 |
| 50:4 | 65:8;67:2,2,4;72:6; | 274:10 | 305:20;322:17 | 103:22;121:2;16 |
| term (8) | 90:3,6,13,16,17;91 | thinking (35) | thresholds ( | 165:14;269:17;303:1; |
| 144:21 | 14;92:5;94:20; | 19:14;22:16;47 | 198:21,22;199:13; | 308:10;320:15 |
| 150:16; | 116:16;118:19 | 48:13;50:15;54:2 | 274:11;284:14 | told (1) |
| 217:11,15;218 | 131:22;137:20;151 | 85:2;106:12;107: | threw (1) | 57:16 |
| terminology (3) | 160:22;164:16;167: | 119:16;121:19;156:7, | 255:15 | tolerable (1) |
| 125:12;218:1; | 8;170:19;195:17; | 10;164:4;214:22; | throw (4) | 7:17 |
| 288:20 | 202:14,19;203:1; | 218:11;219:9;227:13; | 53:14;95:10;98:2 | tolerance (16) |
| terms | 207:4;224:17;228:1 | 233:16;234:6;237:17; | 308:6 | 15:22;16:14,17,18; |
| 19:13 | 230:3,7;233:1;238:1 | 243:10;246:19;251:7; | th | ;23 |
| 29:3;31:13,17 | 16;239:21;240:12; | 266:8;272:4;282:20; | 32:7;136:13 | 243:20;250:14,17,18; |
| 44:15;54:17;70:9 | 243:14;244:20;245: | 291:1,19;292:17; | 309:15;314:18 | 251:3,17;257:18; |
| 73:18;107:9;132:6 | 257:3;270:1;271:8; | 301:1;303:22;311:18; | thunder (1) | 274:5;276:14 |
| 142:4;145:5;146:2 | 285:22;332:13 | 314:4;329:13 | 41:17 | tomorrow (10) |
| 164:3;170:3;182:15 | tests (37) | third (5) | thyroid | 51:4;209:7; |
| 189:17;192:18;198:3, | 16:10;42:16;46 | 33:22;49:15;112:6 | 223:8;225:1;248:2 | 282:20;284:10 |
| 10,12,16,22;199:7,11, | 12,22;47:3,7,19 | 204:17;307 | tick (1) | 294:19;295:19;314:1; |
| 20;200:18;201:7,8,13; | 104:22;105:1;111:21; | thorough (3) | 117:8 | 328:11,22;334:8 |
| 202:10,12;205:4; | 149:15;195:22;196:1, | 66:22;234:12;289: | tie (3) | ton (2) |
| 206:3,7,11,21;207:3, | 20;197:12,15;199:20; | thoroughly (1) | 8:5;224:6;295:20 | 161:2;26 |
| 22;213:13,19;216:22; | 202:10,21;203:7; | 289:11 | timed (1) | took (10) |
| 217:17;218:3;219:6,8; | 210:10,14;219:5, | thou | 278:21 | 33:11;34 |
| 222:2;226:14;232:8; | 220:3;225:20;234:1 | 43:7;82:4;87: | timeline | 9:16;96:14;102:4 |
| 238:2;242:9;253:11, | 239:14,17;243:16 | 129:11;173:1 | 163:12 | 103:3;107:13;115:20, |
| 17;254:7;255:9; | 248:17;251:17;259:3 | 202:20;231:12 | timely | 119:19 |
| 258:11;260:11; | 275:6;322:13 | 35:22;256:21 | 8:13 | tool (2) |
| 261:19,22;262:2 | testy (1) | 258:16;273:5;299:1 | times | 204:12;284:3 |
| 263:3;271:2;273:11 | 4:17 | 301:8;302:3 | 6:5;89:6;138:20 | Tools (4) |
| 15;285:21;288:22 | Te | thought (20) | 303:7 | 13:18;13 |
| 300:22;301:4;308:11 | 39:22 | 58:17 |  | 332:22 |
| 316:1,7,10;326:2 | Thanks | 58:17;67:16;11 | 1:22;219:11, | $\boldsymbol{t o p}(5)$ |
| terrible (2) |  | 166:22;177:5;202:8 | 328:3;332:12 | 30:17;2 |
| 212:5;275 | 1:18;148:3;214:16; | 215:6;217:14;241:5; | tiniest (1) | 234:18;255:11;285:14 |
| terribly (1) | 215:12;252:14;286:12 | 245:20;255:8;259:4,6; | 86:21 | topic (12) |
| 213 |  | 280:11;286:5;311:2; | titer-posit | 47:12;52 |
| terrific (4) | :17 | 328:16 | 134:12 | 180:22;195:11;253:3, |
| 121:18;1 | theme |  | title | 15;256:4;258:3 |
| 185:16;247:15 | 53:20;1 | 182:7; | 125:7;2 | 266:12;286:6;314:1 |
| tertiary (2) | theoret | 87: | T | topics (3) |
| 44:13;45: | , | thousand (3) | 184:8 | 40:7;258:10,21 |
| test (41) | therapeutic (7) | 86:14;143:13, | today (11) | topiramate (3) |
| 16:17;22:5; | 7:7,12;18:2;70: | threats | 4:7;6:1;1 | 241:21;242:1;299: |
| 59:6,10,13;75:16; | 203:12,17,2 | 302:15 | 48:9;93:20; | Toronto (4) |
| 79:2;105:8;116:10, | therapeutics (2) | three | 220:9;241:14;287:16; | 275:1,7,13;276:1 |
| 15;128:7;155:19; | 7:6,16 | , | 299 | total (1) |
| 157:1,11;158:3; | therapies (8) | 4,10;83:4,15;86: | today's (1) | 326:20 |
| 160:16;162:14,21; | 11:22;13:8;110:16 | 103:20;119:18 | 228:8 | totally (2) |
| 163:10;164:5,9,10; | 18;140:8;143:12; | 165:17;176:20;186:6; | Todd (12) | 19:21;53:17 |

## touch (10)

12:8;13:15;15:14; 22:15;29:5;30:2;40:7; 270:1;308:14;333:19
touched (4)
13:3;25:10;152:22; 306:19
tough (2) 119:7;158:8
toward (1) 170:11
towards (2) 9:6;153:12
towers (1) 90:3
toxic (2) 96:15;97:15
toxicity (2) 227:21;318:16
tracked (1) 47:17
traditional (1) 273:1
traditionally (2) 73:21;105:12
transcribing (1) 23:22
transcription (1) 23:20
transferred (1) 102:5
transient (1) 102:6
transition (1) 187:10
translational (2) 8:2;35:14
Translations (1) 5:17
transplant (3) 20:6,7;185:17
transplantation (1) 185:7
travel (1) 39:19
treat (24) 13:13;65:12;86:21; 90:14;101:9;124:13; 131:2;143:4,9;146:13, 13;149:13;156:14; 173:6;177:7;178:11; 179:4;180:1;300:2; 303:19;319:1,2,4,17
treated (19) 11:19;17:12;18:15; 38:18;110:14;112:15; 114:8;126:19;136:8; 173:21;174:1;177:9, 17;178:16;248:19,19, 20;249:9;331:15
treating (11) 94:2;116:20; 129:19;142:22;

143:11;147:18;
149:17;150:17;
178:19;289:7;319:19
treatment (42)
7:9,19;18:15,16,21; 26:15,17;34:11;37:15; 50:22;70:7;121:11; 128:14,17;129:7,8; 130:7,12,21;135:4; 141:14,15;153:12; 157:7;181:14;182:5; 187:6,6,9,16;244:10; 249:15;250:4;280:4; 282:11;298:13,14; 299:2;317:13,14; 319:21;329:19
treatment-induced (3)
37:5;291:2;292:11
treatments (2) 35:15;147:21
treatment's (1)
164:19
tree (13)
300:8,10;303:4,7;
308:2;309:21;310:2,
19;314:3,21;323:15;
327:19;333:2
Treister (4)
286:21;287:1,9,15
Trek (1)
180:6
tremor (1)
219:16
Trial (113)
5:16;8:11,14;14:7;
16:15;17:14,21,22;
19:20;20:11;21:6; 22:19;23:9;34:15; 48:17;53:7;54:18; 70:9,13,14,16;112:22; 129:15;150:13; 154:17;155:6,9; 156:14;157:2;159:3; 165:18;172:4,19; 173:5,6,9,13,14;174:1, 11;180:13;185:11,13; 187:12;205:11; 216:18;217:1,6;234:6; 236:3;239:10;240:3,9; 241:17,19;243:22; 247:17,17;248:11; 249:4,20;250:1,2,7,20, 22;251:1,12;272:6; 273:4,21;283:5,9,21; 286:7;290:7,20; 292:22;293:14,22; 294:19,21;295:9; 296:19;298:2,4,13,19; 299:2,7,7,8,12,22; 300:1;304:19;306:6,8; 307:4,19,22;311:5; 312:3;314:10;315:12, 14;316:1;320:18;

324:3,6,7;329:5,9 trials (54)

8:10,11,18,20;
12:17;14:5;15:2,6;
17:16;19:10;21:12; 70:19;93:22;121:14; 135:3;137:17;138:4, 12;160:18;171:12; 190:17;193:11; 203:12,16,18,21; 204:9;205:3,4;237:18;
247:20,21;248:13;
250:13,15;265:21; 284:1,13;285:11; 292:18;298:3;299:17,
18;300:13;303:22;
305:9,11;311:17;
312:22;314:9;320:16;
322:18;324:9;325:1
trickle (1)
73:10
tricky (1)
317:12
tried (7)
31:16;99:12;
108:14;113:15;179:4;
188:10;286:3
trigeminal (1)
64:1
triglycerides (1)
234:16
trouble (1)
157:21
true (14)
38:8;40:14;49:10;
50:7,17;65:15;135:10;
156:13;239:22;252:6, 8;274:16;280:13; 316:6
truly (7)
121:5;145:19;
165:4;180:8;230:19;
258:5;311:9
trunk (1)
176:1
try (22)
50:14;94:6;97:1;
121:2;131:7;164:2; 172:9;185:12;187:7; 190:15;200:5;205:1; 216:1;242:18;243:4; 245:19;253:4;287:17; 303:19;321:1,4; 322:21
trying (29)
92:20;107:11; 109:7;113:3;114:3; 118:15;125:11; 141:10;150:1;183:8; 217:6;224:5;232:1; 246:2;253:8,17;254:7; 262:10;273:2;281:6; 287:20;301:20;308:9;

311:16;313:10;316:5; 319:1,2,3
TSH (1)
226:1
TS-HDS (6)
107:20,22;108:9;
115:11;118:20;120:19
T'sorg (1)
10:5
TTT (1)
43:7
turn (1) 177:16
turned (2) 104:20;149:6
turning (3) 223:13;260:13; 267:14
turns (5) 25:8;43:17;48:7; 65:14;227:7
twenties (1) 246:21
Twenty-five-year (1) 96:21
two (64)
9:3,3;10:4;11:6; 14:20;17:2;20:16; 22:4,15;59:8;61:2; 63:3;101:22;102:16; 103:9;107:11;112:18; 118:10;128:7;130:19; 138:6;139:17;140:11; 151:20;159:10;164:3; 166:2;172:2;186:9; 187:4;189:22;190:2; 192:9,14;198:11; 199:4,13;214:4,18,19, 21;215:1;218:16; 222:5;224:3;233:19; 243:3;248:1;254:21; 259:9;275:12;280:21; 281:1;283:7,10,15,20; 291:20;297:17;
306:22;324:20;325:6; 328:7;329:21
two-thirds (1) 31:1
Type (24)
29:7;30:6,11;31:3; 33:8,9,14;34:17; 36:21;37:2;66:2; 86:17;106:7;119:10; 130:13;174:14;176:5; 246:20;270:13; 276:12;291:7;322:11, 13;328:20
types (9)
28:20;103:21;
104:2;117:17;132:16;
147:3;273:3;276:14; 298:3
typewriter (1)

12:14
typical (4)
58:19;283:8;310:4, 9
typically (1) 27:8
typo (1) 215:4

## U

## UCEYLER (14)

71:6,15,18;72:7;
123:19;125:18;
148:14;168:2,19;
169:6;182:20;208:21;
309:20;311:15
UENS (6)
236:22;237:4;
271:13;274:22;
284:16;291:13
ugly (1)
200:14
ultimately (2)
73:11;264:21
ultra (1)
44:13
umbrella (1)
322:4
unable (1)
92:21
unaffected (1) 61:1
unanswered (1) 69:16
unbiased (1) 50:11
unclear (3)
73:14;192:1;194:19
unclearly (1) 26:9
uncommon (1) 220:17
under (5) 4:14;9:15;12:19; 138:15;302:10
underestimate (1) 222:11
underlined (1) 68:17
underlying (10) 58:2;147:5;166:6, 13;177:12;251:3; 264:20;266:15; 318:16;319:20
underpins (1) 56:8
underrecognized (1) 37:5
understood (3)
11:18;149:11;
323:15
undertaken (1)

| 8:22 | 103:15;112:18; | 287:22;288:11; | 13:20;256:1;257:3; | 103:17;198:13; |
| :---: | :---: | :---: | :---: | :---: |
| underway (1) | 115:14;120:5;123:2; | 294:12,13,17;302:1,1; | 262:21;314:14 | 208:22;213:13 |
| 23:14 | 124:9;125:12;126:6; | 324:9 | Valorie (1) | Venn (1) |
| underwent (3) | 129:12;130:6;131:22; | useful | 24:7 | 100:13 |
| 43:2;230:8;232:12 | 150:22;151:17; | 46:1,4;91:21 | valuable (1) | versa (1) |
| undetectable (1) | 153:18;154:5;158:18; | 156:13;181:15 | 291:4 | 100:15 |
| 249:10 | 175:8;178:21;182:10; | 204:12;219:6,8; | valuably (1) | version (1) |
| unexpected (2) | 183:9;187:11;191:14; | 222:15;230:11;241:3; | 274:7 | 265:19 |
| 194:18;207:17 | 192:18;193:12; | 259:6;312:21 | value (11) | versus (32) |
| unexplained (1) | 202:12;218:20;220:8; | usefulness (1) | 47:21;48:2;138:2 | 27:2,15;47:21,22, |
| 217:20 | 245:18;247:2,6;249:7, | 238:14 | 212:2,5;214:10 | 22;48:17;54:16;80:4; |
| unfortunately (7) | 12;254:2;263:9; | useless (1) | 227:12;285:12;290:6, | 82:20;83:16;86:22; |
| 62:18;93:21; | 266:16;267:7,15; | 46:6 | 21;292:16 | 89:1,15,18;95:18; |
| 108:12;260:19 | 268:4;270:14;278:21; | users (1) | values (2) | 18:5;126:9;131:16; |
| 261:13;273:13;324:10 | 288:13;289:2;291:17; | 212:22 | 60:18;108:19 | 195:6;198:10;201:19; |
| unhelpful (1) | 295:11,19;300:8,10; | using (22) | variability (5) | 203:5;211:5;212:14, |
| 105:22 | 306:4;312:9;313:5 | 20:18;21:21;59: | 115:5,7;212:1 | 14,15,15,15;321:16; |
| uniformly (1) | 314:3,20;323:22; | 124:8;129:18;150:16; | 270:14;272:9 | 327:3;329:6;330:11 |
| 233:9 | 324:10,14;327:19; | 196:14,15,16,18,19; | variable (2) | Vertex (1) |
| Union (1) | 328:9;330:7;333:4 | 226:20;240:8;262:21; | 64:6;271:2 | 57:5 |
| 57:3 | upcoming (1) | 266:6;267:4;277:7,9; | variables (5) | vesicular (1) |
| unique (4) | 269:18 | 283:13;287:21; | 118:10;119:1 | 98:2 |
| 69:11;81:8 | upper (2) | 294:12;311:20 | 121:1;184:4;316:1 | via (1) |
| 321:22 | 32:17;270: | usual (1) | variance (4) | 242:9 |
| United (12) | upper-limb (1) | 23:15 | 171:5;244:7 | viable (1) |
| 12:22;29:21;30:16; | 107:22 | usually (2) | 296:11,11 | 167:7 |
| 31:15;37:1;39:8,16, | up-to-date | 226:21;246:12 | variant (11) | vibration (17) |
| 18;49:2;87:20;224:7; | 265:19 | Utah (5) | 66:19,21;88:9,1 | 197:10;198:21; |
| 250:18 | urinary (1) | 135:16;236:16 | 15;161:4;163:4 | 199:11,12;200:12; |
| universal (2) | 259:21 | 270:21;297:4;326:19 | 170:8;171:10,13, | 201:22;202:1;207:14; |
| 164:8;212:22 | urination (1) | Utahans (1) | variants (24) | 208:6,17;219:19,20; |
| University (6) | 261:7 | 226:19 | 65:5;69:11;74 | 270:1;271:21;330:12; |
| 4:13;170:15; | use (67) | utility (3) | 15,22;75:18;80:5,22; | 333:20,21 |
| 187:20;215:16;287:2, | 14:15;21:15;22 | 46:11;238:10 | 81:3,12;82:7,9;84:17; | vibratory (2) |
| 3 | 35:15;59:12;72:1 | 276:19 | 88:8,11,13,13,17; | 313:21;321:15 |
| unknown (4) | 96:3;108:12,14; | utilization (1) | 170:22;231:11; | vice (1) |
| 193:21;198:2; | 132:14,15;152:8; | 48:6 | 232:17;244:9;252 | 100:15 |
| 232:17;311:9 | 154:17,18;158:20; | Utrecht (1) | variation (1) | view (2) |
| unless (7) | 159:7;160:10,13; | 32:16 | 64:14 | 152:1;181:10 |
| 94:10;178:12; | 162:22;167:11;171: |  | varies (4) | viewed (1) |
| 185:15;211:18; | 172:17;176:14; | V | 30:15;38:14;95:1 | 221:9 |
| 240:16;251:18;325:3 | 177:14;180:14; |  | 166:9 | views (2) |
| unlikely (2) | 183:11;187:5;196:11 | vacation | variety (10) | 151:20;290:6 |
| 116:14;295:19 | 203:15;204:7,14,18; | 233:2 | 100:12;123:6 | vigorous (1) |
| unmeasurable (1) | 207:1,17;210:3,20,21, | vaccine (8) | 151:8;194:3,13;195:8; | 220:12 |
| 11:10 | 21;211:3;212:7,22; | $102: 17,17 ; 117: 12$ | 196:1,13;197:8,15 | Virginia (2) |
| unmyelinated (1) | 218:8;232:1;237:6; | 13;133:19;134:1,10, | various (9) | 215:15;226:19 |
| 32:9 | 240:5;243:9;265:20; | 14 | 8:19;17:3;19:4; | virus (1) |
| unnecessary (2) | 266:10;269:9;276:18, | vague (4) | 36:2;188:13;219:5,18; | 136:2 |
| 271:9,11 | 21;282:3;283:11; | 139:12;217:15 | 288:12;289:15 | vision (1) |
| unrestricted (1) | 285:19;288:20;289:4; | 250:8,9 | vary (2) | 186:14 |
| 9:11 | 295:5,7,18;296:15,19; | valid (2) | 258:15;262:1 | vitamin (8) |
| untargeted (1) | 297:18;303:8;315:3; | 142:22;332: | vasculature (1) | 223:7;225:9 |
| 79:16 | 325:1;332:6,15 | validate (1) | 302:16 | 226:16,19,21;238:16; |
| unusual (2) | used (37) | 291:8 | vasculitides (2) | 239:4;249:22 |
| 300:20;301:2 | 20:19;21:11;27:4; | validated (5) | 106:5;179:16 | vitro (1) |
| up (79) | 35:6;97:21;131:17,21, | 255:8;262:16; | vast (2) | 192:7 |
| 6:1,10;8:4;10:22; | 22;138:10;187:22; | 273:14;275:2;333:17 | 16:19;200:20 | vivo (1) |
| 15:3;21:20;28:12; | 191:3;204:3,10;205:5, | validating (1) | vastly (1) | 192:6 |
| 33:10;34:2;38:13; | 6,9;208:6;211:11,22; | 255:6 | 202:11 | voice (10) |
| 44:10;52:4,21;54:8; | 217:17;218:3;252:18; | validation (3) | velocities (2) | $23: 16 ; 54: 5 ; 85: 11$ |
| 73:11;74:14;75:5; | 273:21;276:20;283:2, | 255:22;265:18,18 | 104:9,15 | $91: 17 ; 136: 21 ; 205: 21$ |
| 77:21;92:9;101:21; | 20;285:10,19;286:1; | Validity (5) | velocity (4) | 247:12;284:19; |


| 288:17;297:2 | ways (7) | 167:11;231:13;233:5; | 14:15;132:12,15; | 162:3 |
| :---: | :---: | :---: | :---: | :---: |
| voices (1) | 59:8;77:13;100:12; | 258:3;267:16 | 82:18;243:15; | Y |
| 23:22 | 229:6;243:4;257:7; | w | 283:11;331:20 | Y |
| 59:9 | weakness (5) | 97:12;186:12;192:10; | 7:3 | Yale (1) |
| volunteers (2) | 104:14;113 | 227:19;268:1 | words (6) | 56:8 |
| 201:5;213:8 | 330:17,20;331:5 | whose (3) | 5:12;132:3,14; | yea (1) |
| Von (1) | weaknesses (2) | 4:14;117:20;227: | 247:20;267:4;314:18 | 320:3 |
| 210:21 | 263:7,7 | wide (4) | work (42) | year (25) |
| vote (1) | website (1) | 137:16;145:11; | 10:15;18:3,3,5 | 4:16;9:5,7;14:3,12, |
| 143:18 | 10:3 | 254:2;270:14 | 22:6;31:19;38:20 | 13;21:7;31:18,22; |
| voting (1) | weed (1) | widely (10) | 42:9;44:12;45:15; | 38:12,12;58:12; |
| 93:9 | 242:21 | 20:18;30:15;37:18; | 48:6;50:13,16;69:7; | 101:22;108:5,20; |
|  | week (6) | 38:14;266:9;271:1 | 73:8;76:8,16,19; | 115:9;130:19;134:10; |
| W | 117:14;131:6 | 273:21;276:19; | 94:14;108:16;114:12; | 148:21;173:11;187:1; |
|  | 161:3;188:9;330:6; | 294:13;308:21 | 137:2,12;145:22; | 191:3;246:9;247:8,9 |
| wait (2) | 331:5 | widespread (6) | 146:3;153:12;155:2; | years (47) |
| 77:10;288:4 | weight (1) | 21:2;62:2;99:22 | 156:9,19;167:10; | 6:3;9:1;10:11 |
| walk (1) | 242:1 | 112:4;118:3;273:22 | 170:3;181:2;183:13; | 11:11,16;12:20;13:16; |
| 228:13 | weighted (1) | wild (2) | 191:8;200:5;212:1; | 17:13;21:8;33:10; |
| walking (1) | 210:22 | 66:1;76:14 | 213:14;214:13; | 34:2;52:20;54:21; |
| 331:13 | Welcome (6) | wild-type (3) | 225:12;248:5;297:11; | 61:3;68:1;71:20; |
| wants (3) | 4:3;5:8;10:16; | 60:6;61:8,22 | 308:8 | 77:22;78:17,19;87:8; |
| 56:1;185:7;253:10 | 286:20;287:5;296:4 | willing (1) | working (7) | 95:3;96:10;102:16; |
| warm (10) | well-being (1) | 172:9 | 15:1;27:3;29:1; | 103:2;106:11;111:11; |
| 189:7;190:8;197:9 | 172:12 | window (3) | 38:3;57:21;65:4; | 114:13;115:4;122:13; |
| 199:7,8;207:3,8; | well-defined (3) | 145:4;147:11; | 175:3 | 130:19;134:3;145:8; |
| 208:18;213:16;322:17 | 171:11;192:8,16 | 317:20 | works (11) | 146:22;148:1;160:1; |
| warmth (3) | well-to-do (1) | wise (1) | 77:4;94:12;112:21; | 161:1;212:18;218:22; |
| 198:20;200:11; | 30:17 | 229:11 | 137:4;155:3;160:11; | 225:15;238:9;249:15; |
| 201:16 | weren't (2) | wish (2) | 165:12,13;192:11; | 275:12;281:1;289:1; |
| Wash (2) | 274:17;287:9 | 6:6;274:16 | 333:1,3 | 301:15;303:13;316:21 |
| 100:4;110:2 | western (1) | withdraw (1) | workup (4) | yellow (2) |
| Washington (2) | 222:12 | 317:13 | 16:5;66:22;196:10; | 189:14;192:19 |
| 4:22;187:19 | whatnot (3) | withdrawn (1) | 238:17 | уep (1) |
| watermarks (1) | 229:6;278:22;314:6 | 116:22 | world (12) | 120:6 |
| 263:3 | what's (25) | withdrew (1) | 16:1;30:1,15;37:13, | yield (4) |
| Waxman (3) | 11:5;26:16;44:3; | 152:2 | 18;39:10,12;74:4; | 210:7,14;240:13 |
| 58:13;64:1;162:6 | 47:20;49:16;50:3,3; | within (12) | 90:5;127:20;246:19; | $245: 14$ |
| way (73) | 73:17;144:2;153:1; | 30:16;63:13;80:5,6, | 277:15 | young (1) |
| 5:6;8:11,19;26:20; | 177:5;193:22;210:1; | 21;83:5;86:10;99:10; | worry (1) | 64:15 |
| 31:6;35:14;38:3; | 222:15;223:2;232:2, | 164:20;166:2;222:9; | 321:18 | younger (4) |
| 45:14;51:12;53:4,5,5; | 18,20;241:15,16; | 228:17 | worse (7) | 54:21;80:20;87:10; |
| 58:7;74:14;105:8; | 278:11;298:10; | without (21) | 61:15;106:16; | 246:4 |
| 106:13;114:20;118:6, | $301: 22 ; 324: 12 ; 330: 10$ | 6:8;10:12;22:8; | $114: 3 ; 140: 13,14 ;$ $143 \cdot 6 \cdot 146: 18$ | Z |
| 18;121:20;131:18; | whatsoever (2) | 42:2;70:18;73:5; | 143:6;146:18 | $\mathbf{Z}$ |
| 139:10,16;153:19; $155 \cdot 5 \cdot 162 \cdot 9 \cdot 166 \cdot 5.12$. | 235:15;308:20 | 87:13;121:16;130:20; | worth (3) |  |
| 155:5;162:9;166:5,12; | whenever (1) | 167:8;169:6;173:8; | 25:22;52:12;198:20 | zero (4) |
| 169:19;171:22;178:7, | 135:3 | 186:14;187:17; | Wow (1) | 89:7;115:1;120:11; |
| 7,7,8,8;194:10,16; | whereas (4) | 219:13;227:5,14; | 238:22 | 270:15 |
| 195:2;197:1,19; | 227:17;228:21 | 258:9;260:10;275:12; | wrinkling (1) | Ziegler (1) |
| 200:17;203:20; | 229:14;233:1 | 301:3 | 197:13 | 35:22 |
| 223:13;242:13; | Whereupon (4) | Wolk (1) | write (3) | Ziegler's (1) |
| 249:22;251:6,10; | 92:6;185:21; | 147:10 | 23:21;53:5;85:6 | 235:18 |
| 252:11;260:22;269:6; | 286:16;334:10 | wonder (1) | writer (1) | Zika (1) |
| 272:12;274:7;283:12; | whim (1) | 136:3 | 162:3 | 136:2 |
| 287:6;289:20;297:19; | 179:4 | wondered (3) | writing (3) | Zilliox (1) |
| 298:4,5,6;299:6; | white (3) | 86:16;162:7;267:13 | 175:8;249:2;282:18 | 280:15 |
| 303:15;304:8;306:5; | 30:18;197:17;200:4 | wonderful (3) | wrong (7) | zoster (1) |
| 308:22;309:13; | whole (15) | 4:7;24:10;56:13 | 41:8;152:4;256:21; | 28:10 |
| $310: 19 ; 312: 4 ; 313: 12$ | 8:5;81:13,22;91:5; | wondering (1) 246:11 | $\begin{aligned} & 290: 14 ; 300: 8,10 \text {; } \\ & 327 \cdot 10 \end{aligned}$ | 0 |
| $\begin{aligned} & 314: 4 ; 318: 6 ; 320: 11 ; \\ & 323: 20 ; 332: 5 \end{aligned}$ | $\begin{aligned} & \text { 44:13;134:1,2,21 } \\ & \text { 159:11;161:16; } \end{aligned}$ | word (7) | $\begin{array}{r} 327: 19 \\ \text { wrote (1) } \end{array}$ | 0 |


| 0 (2) | 208:16;229:14 | 54:21;95:8,12,19; | 62:15;72:1;82:1; | 212:15;232:21;233:2; |
| :---: | :---: | :---: | :---: | :---: |
| 204:5;260:7 | 112 (1) | 104:6,6;107:7;109:18; | 96:11;107:17;111:7; | 270:20 |
| 0.1 (1) | 31:14 | 111:16;129:13;145:8; | 113:18;115:9,11,14; | 400 (1) |
| 88:12 | 1140 (1) | 164:21;174:19; | 127:22;129:13; | 108:18 |
| 0.5 (3) | 67:19 | 218:22;246:6,8; | 131:16;147:10; | 400,000 (1) |
| 107:18;228:22; | 11A (2) | 270:20 | 175:22;198:7;207:12; | 37:1 |
| 231:16 | 67:22;76:7 | 200 (2) | 212:14;226:6;229:14; | 41 (1) |
| 0.8 (1) | 12 (9) | 36:1,1 | 235:10;245:13; | 111:5 |
| 37:17 | 110:16;112:14; | 2001 (1) | 250:17;288:1;324:6,7 | 43,000 (1) |
|  | 134:11;168:18; | 58:8 | 3:05 (1) | 191:6 |
| 1 | 223:17;226:7;259:16; | 2004 (1) | 286:16 | 440 (1) |
|  | 260:15;333:15 | 58:9 | 3:20 (1) | 85:17 |
| 1 (20) | 12:13 (2) | 2006 (1) | 286:15 | 45 (4) |
| 21:7;33:8,9,14; | 185:21;186:2 | 58:14 | 30 (9) | 11:3;108:19;110:2; |
| 36:10,21;37:3;62:6, | 123 (1) | 200-gene (1) | 77:4;129:13; | 328:16 |
| 12;88:11;89:13,18; | 193:12 | 232:12 | 144:11;154:8;212:15; | 450 (1) |
| 105:17;120:12; | 12-questionnaire (1) | 2010 (3) | 222:8;223:2,18;246:6 | 81:1 |
| 127:22;222:11; | 259:9 | 5:20;9:18;124:1 | 300 (1) | 46 (1) |
| 235:10;250:17;291:7; | 12-week (1) | 2011 (1) | 175:4 | 224:21 |
| 294:20 | 141:1 | 221:17 | 300,000 (1) | 47 (2) |
| 1,000 (1) | 1310 (1) | 2012 (1) | 319:11 | 110:15;113:2 |
| 71:10 | 222:17 | 72:9 | 31 (1) | 485 (1) |
| 1.2 (1) | 133 (1) | 2013 (2) | 103:17 | 38:9 |
| 236:2 | 227:6 | 124:16;131:5 | 31.5 (1) | 4-by-4 (2) |
| 1.3 (2) | 13-item (1) | 2015 (1) | 30:5 | $262: 6 ; 276: 22$ |
| 131:19;155:9 | 261:1 | 221:17 | 32 (1) | 4-point (1) |
| 1.6 (1) | 14 (5) | 2016 (2) | 260:16 | 261:2 |
| 115:13 | 30:6;107:6;110:17; | 47:12;187:3 | 32-question (1) |  |
| 1.7 (19) | 175:11;189:6 | 2018 (2) | 260:6 | 5 |
| $40: 16 ; 56: 12 ; 58: 10$ | $140(3)$ | $\begin{aligned} & \text { 122:16;187:1 } \\ & 213 \text { (1) } \end{aligned}$ | $33 \text { (2) }$ | 5 (21) |
| 7;81:9;154:11,14; | 143 (1) | 228:9 | 35 (2) | 38:15;61:3;71:22; |
| 155:7,9,19;156:8,18; | 110:12 | 22 (3) | 92:17,22 | 81:15;87:8;88:9,14, |
| 157:13;158:5;164:7 | 15 (10) | 113:9;172:12;204:9 | 38 (3) | 18;105:17,22;108:10; |
| 1.8 (6) | 6:3;67:22;71:12; | 225 (1) | 193:16;195:10; | 117:6,6;122:12;148:1; |
| 67:14;76:18,22; | 107:7,17;112:14; | 33:21 | 206:6 | 199:2;203:2;208:17; |
| 79:7;155:9,19 | 134:11;169:12; | 230,000 (1) | 3-month (1) | 220:9;233:1;328:1 |
| 1.9 (2) | 225:15;260:16 | 39:7 | 185:13 | 5.8 (1) |
| 67:14;79:7 | 1500 (2) | 24 (2) | 3-year (2) | 131:20 |
| 1:00 (1) | 67:19;79:19 | 196:15;219:12 | 96:7;120:8 | 50 (9) |
| 328:12 | 16 (3) | 2400 (1) | 3-years (1) | 39:1;64:17;111:12, |
| 10 (22) | 6:3;116:21;149:1 | 36:8 | 169:13 | $16 ; 112: 22 ; 212: 15$ |
| 11:11;39:17;52:20; | 17 (1) | 245 (1) |  | 234:11;247:10;316:21 |
| 67:22;71:11;85:20; | 82:16 | 227:4 | 4 | 500 (2) |
| 89:13,20;96:14;103:2; | 171 (1) | 25 (4) |  | 79:20;143:14 |
| 110:17;130:17; | 38:12 | 25:13;189:4; | 4 (19) | 51 (1) |
| 144:12,18;174:19; | 18 (2) | 207:13;247:8 | 62:15;66:4,8;71:22; | 69:10 |
| 184:8;193:9;204:5; | 65:19;198:4 | 25-year (1) | 72:1;78:7;88:14; | 53 (1) |
| 219:13;315:1;323:1, |  | 96:6 | 108:10;203:2;204:4; | 230:19 |
| 14 | 2 | 25-year-old (1) | 207:12;208:16; | 594 (1) |
| 10:01 (1) |  | 247:1 | 212:14;228:21; | 192:19 |
| 92:6 | 2 (27) | 27 (1) | 253:18;262:8,8; | 5-point (1) |
| 100 (2) | 21:8;29:7;30:6,11; | 205:3 | 294:20;305:17 | 259:14 |
| 232:10;235:9 | 34:15,17;58:8;62:6, | 278 (1) | 4,000 (2) | 5-year (1) |
| 100,000 (2) | 12;86:17;89:18; | 68:18 | 221:8,9 | $147: 10$ |
| 38:10;39:17 | 97:13;101:11;105:21; | 29 (1) | 4:15 (2) |  |
| 10A (2) | 110:8;114:2;115:10; | 92:19 | 286:19;333:6 | 6 |
| 67:22;76:7 | 117:12;175:6,22; | 2-hour (1) | 4:17 (1) |  |
| 11 (12) | 199:5;237:1;246:20; | 47:21 | 334:10 | 6 (11) |
| 189:3;192:21; | 260:7;268:6;287:22; |  | $40(12)$ | $21: 7 ; 30: 19 ; 87: 8$ |
| 193:17;194:11;197:2, | 328:1 | 3 | 39:1;64:16;77:5; | 114:7,17;115:2,11,14; |
| $\begin{aligned} & \text { 22;198:7;202:16; } \\ & \text { 205:14;206:18; } \end{aligned}$ | 20 (20) $11: 11 ; 38: 17 ; 52: 20 ;$ | 3 (26) | $\begin{aligned} & \text { 131:16;189:20; } \\ & \text { 196:14,18;201:1; } \end{aligned}$ | $\begin{aligned} & 122: 13 ; 129: 13 ; 232: 13 \\ & \mathbf{6 , 0 0 0}(\mathbf{2}) \end{aligned}$ |



